TECHNICAL INFORMATION

Core identification according to DIN VDE 0815	232
Core identification according to DIN VDE 0816	234
Core identification according to DIN VDE 0813	234
Core identification according to DIN 47100	235
Core identification according to DIN VDE 0293	236
Colour codes	236
Strand constr. & conductor resistance acc. to VDE 0295	237
Strand conversion AWG	238
Carrying capacity of europallets • J-Y(St)Y	238
Carrying capacity of europallets • NYM	239
Carrying capacity of europallets • Data cable	239
VOKA LAN – Structured cabling of buildings	240
VOKA LAN – Classification and applicable standards	241
VOKA LAN – Planning and installation advices	243
VOKA LAN – Instructions for connection	244
VOKA LAN – Fire behaviour, fire propagation and	
calorific potential	245
VOKA LAN – Key cable parameters	246

Basic material properties	248
International identification colours for temperature	
measurement technology	249
Codes	250
KTG cable drums	254
Non-returnable drums	256
Properties and test specifications	258
Customised special cables	260
VOKA Kabel GmbH–General	260
CE-identification	261
Environment protection	261
General explanations	262
General Terms and Conditions VOKA-KABEL GmbH	264

Installation cables

J-Y(St)Y ... Lg J-Y(St)Y ... BMK J-Y(St)Yh ... Lg

The colour of the a-core of the first (tracer) pair is red in every layer, in all other pairs it is white. The colour of the b-core is blue, yellow, green, brown and black in continuous repetition as follows:

Ong	Ongoing no. of the pair												colour of B-cores							
1	6	11	16	21	26	31	36	41	46	51	56	61	66	71	76	81	86	91	96	blue
2	7	12	17	22	27	32	37	42	47	52	57	62	67	72	77	82	87	92	97	yellow
3	8	13	18	23	28	33	38	43	48	53	58	63	68	73	78	83	88	93	98	green
4	9	14	19	24	29	34	39	44	49	54	59	64	69	74	79	84	89	94	99	brown
5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	black

Installation cables J-Y(St)Y ... Lg

Installation cables

Bd, J-H(St)H ... Bd

coloured as follows:

quad 1: basic colour red

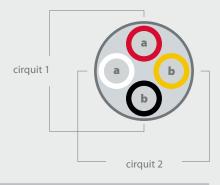
quad 2: basic colour green quad 3: basic colour grey

quad 4: basic colour yellow quad 5: basic colour white

πκα

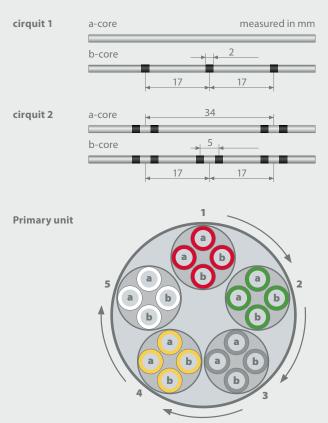
►

In installation cable J-Y(St)Y ... Lg with 2 pairs as star quad:


in circuit 1	the colour of the a-core is red,
	the colour of the b-core is black
in circuit 2	the colour of the a-core is white,
	the colour of the b-core is yellow

J-YY ... Bd, J-HH ... Bd, J2Y(St)Y ... Bd, J-Y(St)Y ...

The cores of a quad are marked with black rings. The


cores of the five star quads of the primary bunch are

PAIR

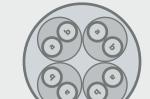
IDENTIFICATION BY RINGS

The tracer bunch is identified by a red plastic spiral in every layer. The other bunches have a white spiral. The quads of a primary bunch are counted in the order of the basic colours.

In cables with more than five star quads the primary and main bunches are counted in the same direction, starting with the tracer bunch of the first inner layer and continuing throughout all layers to the outside.

> Vogtländisches Kabelwerk GmbH • Breitscheidstr. 122 • 08525 Plauen • Germany Phone: +49 3741 590-0 • Fax: +49 3741 590-270 • E-mail: voka@voka.de • Internet: www.voka.de

► Installation cables for industrial electronics


JE-Y(St)Y	JE-Y(St)Yv	JE-Y(St)YY	JE-YCY	RD-Y(St)Y
JE-LIYCY	JE-LiYY	JE-LiY(St)Y		
JE-LiHCH	JE-LiHH	JE-H(St)H	JE-HCH	

Basic colours of insulating covers of bunch pairs

cirquit	1			2		3	4		
core	а	a b		b	а	b	а	b	
basic colour	blue	red	grey	yellow	gren	brown	white	black	

PAIRS FORMED TO UNITS

To distinguish individual bunches, cores must be identified by smear-resistant coloured rings or bunches by spirals of plastic tape with printed bunch number.

When applying the ring identification to distinguish the bunches, the coloured cores must be identified according to table 2 above and picture 1 on the right. The dimensions in picture 1 should be observed to ensure clear distinction of the bunches. A slight blurring at the edge of the ring identification and a minor misalignment of the 2 semirings are permitted.

IDENTIFICATION BY RINGS

IDENTIFICATION OF BUNDLES BY RING GROUPS

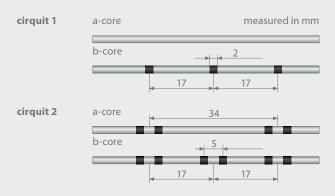
Unit no.	Ring colour	Ring of units of 4 cores	group units of 8 cores/ 4 pairs	spiral colour
1 2 3 4	pink	 	 	
5 6 7 8	orange		 	
9 10 11 12	violet			

Unit no.	Ring colour	Ring of units of 4 cores	group units of 8 cores/ 4 pairs	spiral colour
13 14 15 16	pink		 	blue
17 18 19 20	orange			red

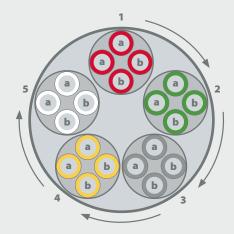
In cables with more than 12 bunches additional bunches are identified^ by a coloured plastic spiral. The counting of bunches starts with the inner layer and continues in the same direction throughout all layers to the outside.

ЛКА

Outdoor telecommunication cables ► A-2Y(L)2Y ... Bd, A2YF(L)2Y


The cores of a quad are marked with black rings. The cores of the five star quads of a primary bunch are coloured as follows:

quad 1: basic colour red quad 2: basic colour green quad 3: basic colour grey quad 4: basic colour yellow quad 5: basic colour white


The tracer bunch is identified by a red plastic spiral in every layer. The other bunches have a white spiral. The quads of a primary bunch are counted in the order of the basic colours.

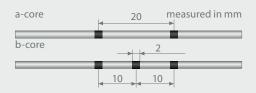
In cables with more than five star quads the primary and main bunches are counted in the same direction, starting with the tracer bunch of the first inner layer and continuing throughout all layers.

IDENTIFICATION BY RINGS

Primary unit

CORE IDENTIFICATION ACCORDING TO DIN VDE 0813

Switchboard cables S-Y(St)Y


Identification of a-core and b-core by basic colour and ring colour.

Ongoin	g no. of st	randing e		asic colour core	Ring colour of the a-core		
1	2	3	4	5		1.5	blue
6	7	8	9	10	a b	white red pink	yellow
11	12	13	14	15	c		green
16	17	18	19	20	d		brown
21	22	23	24	25	e	black	black
26	27	28	29	30	a	grey	blue
31	32	33	34	35	b	grey	yellow
36	37	38	39	40	c	red	green
41	42	43	44	45	d	pink	brown
46	47	48	49	50	e	black	black
Ring col	lour of the	e b-core					
blue	yellow	green	brown	black			

PAIR

IDENTIFICATION BY RINGS

Electronic control cables and computer cables

LIYY and LIYCY

The first colour is the basic core colour.

If cores are multi-coloured, identification is composed of one basic colour and one contemporary colour. Counting from the outside to the inside continuing throughout all layers.

CORE STRANDING

(cables with 4 cores are stranded in the colour order white, yellow, brown, green)

Core	Colour	Core	Colour	Core	Colour	Core	Colour	Core	Colour
1	white	19	whitepink	37	greyblue	55	greypink	73	pinkgreen
2	brown	20	pinkbrown	38	pinkblue	56	redblue	74	yellowpink
3	green	21	whiteblue	39	greyred	57	whitegreen	75	pinkgreen
4	yellow	22	brownblue	40	pinkred	58	browngreen	76	yellowblue
5	grey	23	whitered	41	greyblack	59	whiteyellow	77	greenred
6	pink	24	brownred	42	pinkblack	60	yellowbrown	78	yellowred
7	blue	25	whiteblack	43	blueblack	61	whitegrey	79	greenblack
8	red	26	brownblack	44	redblack	62	greybrown	80	yellowblack
9	black	27	greygreen	45	white	63	whitepink	81	greyblue
10	violet	28	yellowgrey	46	brown	64	pinkbrown	82	pinkblue
11	greypink	29	pinkgreen	47	green	65	whiteblue	83	greyred
12	redblue	30	yellowpink	48	yellow	66	brownblue	84	pinkred
13	whitegreen	31	greenblue	49	grey	67	whitered	85	greyblack
14	browngreen	32	yellowblue	50	pink	68	brownred	86	pinkblack
15	whiteyellow	33	greenred	51	blue	69	whiteblack	87	blueblack
16	yellowbrown	34	yellowred	52	red	70	brownblack	88	redblack
17	whitegrey	35	greenblack	53	black	71	greygreen		
18	greybrown	36	yellowblack	54	violet	72	yellowgrey		

PAIRED STRANDING

Ра	ir	Core Colour		Pa	ir	Core	Colour	Pair	Core	Colour	Pair	Core	Colour
1	45	a b	white brown	12	56	a b	whitered brownred	23	a b	white brown	34	a b	whitered brownred
2	46	a b	green yellow	13	57	a b	whiteblack brownblack	24	a b	green yellow	35	a b	whiteblack brownblack
3	47	a b	grey pink	14	58	a b	greygreen yellowgrey	25	a b	grey pink	36	a b	greygreen yellowgrey
4	48	a b	blue red	15	59	a b	pinkgreen yellowpink	26	a b	blue red	37	a b	pinkgreen yellowpink
5	49	a b	black violet	16	60	a b	greenblue yellowblue	27	a b	black violet	38	a b	pinkgreen yellowblue
6	50	a b	greypink redblue	17	61	a b	greenred yellowred	28	a b	greypink redblue	39	a b	greenred yellowred
7	51	a b	whitegreen browngreen	18	62	a b	greenblack yellowblack	29	a b	whitegreen browngreen	40	a b	greenblack yellowblack
8	52	a b	whiteyellow yellowbrown	19	63	a b	greyblue pinkblue	30	a b	whiteyellow yellowbrown	41	a b	greyblue pinkblue
9	53	a b	whitegrey greybrown	20	64	a b	greyred pinkred	31	a b	whitegrey greybrown	42	a b	greyred pinkred
10	54	a b	whitepink pinkbrown	21	65	a b	greyblack pinkblack	32	a b	whitepink pinkbrown	43	a b	greyblack pinkblack
11	55	a b	whiteblue brownblue	22	66	a b	blueblack redblack	33	a b	whiteblue brownblue	44	a b	blueblack redblack

IDENTIFICATION OF CORES IN MULTICORE CABLES

Number of cores	Cables with gro Code "J"					Cables without green-yellow marked core (protection core) Code "O"				tection core)
	protection core									
2	_					blue	brown			
3	green-yellow	blue	brown			-	brown	black	grey	
4	green-yellow	-	brown	black	grey	blue	brown	black	grey	
5	green-yellow	blue	brown	black	grey	blue	brown	black	grey	black

COLOUR CODES

CODE FOR COLOUR IDENTIFICATION

acc. to IEC 757	Co	de	
colour	old	new	RAL
black	sw	BK	9005
white	WS	WH	9010
blue	bl	BU	5015
red	rt	RD	3000
brown	bn	BN	8003
grey	gr	GY	7001
yellow	ge	YE	1021
green	gn	GN	6018
violet	vio	VT	4005
green-yellow	gnge	GNYE	6018/1021
orange	org	OG	2003
pink	rs	PK	3015
darkblue	dbl		5010
darkbrown	dbn		8014
transparent	tr		-
ultramarine blue	ubl		5002

COLOUR CODE FOR YR-CABLES

Cores	Core colours
2209	bk, bu
2 x 0,8	DK, DU
3 x 0,8	bk, bu, bn
4 x 0,8	bk, bu, bn, ye
5 x 0,8	bk, bu, bn, ye, gn
6x0,8	bk, bu, bn, ye, gn, vt
8 x 0,8	bk, bu, bn, ye, gn, vt, wh, og
10 x 0,8	bk, bu, bn, ye, gn, vt, wh, og, tr, gy
12x0,8	bk, bu, bn, ye, gn, vt, wh, og, tr, gy, rd, lbu
14 x 0,8	bk, bu, bn, ye, gn, vt, wh, og, tr, gy, rd, lbu, cog, lgn
16 x 0,8	bk, bu, bn, ye, gn, vt, wh, og, tr, gy, rd, lbu, cog, lgn, lrd, lye

COLOUR CODE FOR YYSCH-CABLES

COLOUR CODE FOR VEHICLE CABLES

No. of cores	Core colours
1	rd
1	lu
2	wh, bk
3	wh, bk, bn
4	wh, bk, bn, ye
5	wh, bk, bn, ye, gn
6	wh, bk, bn, ye, gn, rd
7	wh, bk, bn, ye, gn, rd, bu
8	wh, bk, bn, ye, gn, rd, bu, vt

Cores	Core colours
2 x 0,6	ye, bn
3 x 0,6	ye, gn, bn
4 x 0,6	ye, gn, bn, bk
5 x 0,6	ye, gn, bn, bk, bu
6 x 0,6	ye, gn, bn, gy, pk, wh
10 x 0,6	wh, bk, hbu, bn, gn, ye, gy, pk, bu, rd
16 x 0,6	1st layer: wh, bk, lbu, bn, gn
	2nd layer: ye, lgy, pk, bu, rd, tr, gy, vt, lgn, og, elf
26 x 0,6	core: wh, bk + 2 drain wires
	1st layer: lbu, bn, gn, ye, lgy, pk, bu, rd, tr
	2nd layer: gy, vt, lgn, og, elf, whbu, whye, whgn, whbn, whbk, rdbu, rdye, rdgn, rdbn, rdbk

236

STRAND CONSTR. & CONDUCTOR RESISTANCE ACC. TO VDE 0295

CONSTRUCTION OF STRANDED WIRES

	1	2	3	4	5	6	7
Cross- section	Stranded wires	Multi-stran- ded wires	Fine-stran- ded wires	Fine-stran- ded wires			
	VDE 0295		VDE 0295	VDE 0295			
	Class 2		Class 5	Class 6			
0,14				18x0,10	18x0,10	36 x 0,07	72x0,05
0,14			14x0,16	32x0,10	32x0,10	65 x 0,07	128 x 0,05
0,34		7 x 0,25	19x0,16	42x0,10	42 x 0,10	88 x 0,07	174 x 0,05
0,38		7 x 0,25	12x0,21	21 x 0,16	48x0,10	100 x 0,07	194×0,05
0,5	7 x 0,30	7 x 0,27	16x0,21	28x0,16	64x0,10	131 x 0,07	256 x 0,05
0,75	7 x 0,37	7 x 0,37	24x0,21	42 x 0,16	96 x 0,10	195 x 0,07	384 x 0,05
1,0	7 x 0,43	7 x 0,43	32 x 0,21	56 x 0,16	128×0,10	260 x 0,07	512 x 0,05
1,5	7 x 0,52	7 x 0,52	30x0,26	84x0,16	192×0,10	392 x 0,07	768 x 0,05
2,5	7 x 0,67	19x0,41	50 x 0,26	140 x 0,16	320x0,10	651 x 0,07	1290 x 0,05
4	7 x 0,85	19x0,52	56x0,31	224 x 0,16	512x0,10	1040 x 0,07	,
6	7 x 1,05	19x0,64	84x0,31	192 x 0,21	768x0,10	1560 x 0,07	
10	7 x 1,35	49 x 0,51	80 x 0,41	320x0,21	1280x0,10	2600 x 0,07	
16	7 x 1,70	49x0,65	128x0,41	512x0,21	2048 x 0,10		
25	7 x 2,13	84x0,62	200 x 0,41	800 x 0,21	3200 x 0,10		
35	7 x 2,52	133 x 0,58	280 x 0,41	1120 x 0,21			
50	19 x 1,83	133 x 0,69	400 x 0,41	705 x 0,31			
70	19x2,17	189x0,69	356 x 0,51	990 x 0,31			
95	19x2,52	259 x 0,69	485 x 0,51	1340 x 0,31			
120	37 x 2,03	336 x 0,67	614x0,51	1690 x 0,31			
150	37 x 2,27	392 x 0,69	765 x 0,51	2123 x 0,31	The number of v	vires in columns 3 t	·o 7
185	37 x 2,52	494 x 0,69	944 x 0,51	170×0,41	is free from oblig		
240	61 x 2,24	627 x 0,70	1225 x 0,51	1905 x 0,41			
300	61 x 2,50	790x0,70	1530x0,51	2385 x 0,41		nly lays down the m	
400	61 x 2,89		2035 x 0,51		diameter of the single wire and the maximum resistance which is related to the cross-section.		
500	61 x 3,23		1768×0,61				

ELECTRIC RESISTANCE OF CONDUCTORS

Cross- section	Tinned wires		Bare wires		Cross- section	Tinned wires		Bare wires	
mm ²	Class 1/2	Class 5/6	Class 1/2	Class 5/6	mm ²	Class 1/2	Class 5/6	Class 1/2	Class 5/6
0,14		142		138	25	0,734	0,795	0,727	0,78
0,25		82		79	35	0,529	0,565	0,524	0,554
0,34		59		57	50	0,391	0,393	0,387	0,386
0,38		46		44	70	0,27	0,277	0,268	0,272
0,5	36,7	40,1	36	39	95	0,195	0,21	0,193	0,206
0,75	24,8	26,7	24	26	120	0,154	0,164	0,153	0,161
1	18,2	20	18,1	19,5	150	0,126	0,132	0,124	0,129
1,5	12,2	13,7	12,1	13,3	185	0,1	0,108	0,0991	0,106
2,5	7,56	8,21	7,41	7,98	240	0,0762	0,0817	0,0754	0,0801
4	4,7	5,09	4,61	4,95	300	0,0607	0,0654	0,0601	0,0641
6	3,11	3,39	3,08	3,3	400	0,0475	0,0495	0,047	0,0486
10	1,84	1,95	1,83	1,91	500	0,0369	0,0391	0,0366	0,0384
16	1,16	1,24	1,15	1,21					

STRAND CONVERSION AWG

AWG No.	Construction of strands acc. to AWG concentric	Construction of strands acc. to VDE bunched	Solid wire acc. to AWG or VDE mm	Conductor cross-section mm ²	Conductor resistance Ω/km	Copper indes	AWG No.	Construction of strands acc. to AWG concentric	Construction of strands acc. to VDE bunched	Solid wire acc. to AWG or VDE mm	Conductor cross-section mm ²	Conductor resistance Ω/km	Copper indes
28				0,08	216	0,80	VDE			0,60	0,28		2,83
28	7 x 0,127		0,321	0,09		0,89	22			0,644	0,33	53	3,25
28		10 x 0,10		0,08		0,79	22	7 x 0,254			0,35		3,55
28		10x0,12		0,11		1,13	22	19 x 0,160			0,38		3,82
VDE			0,40	0,13		1,26	22		7 x 0,25		0,34		3,44
26			0,405	0,13	130	1,28	20			0,812	0,52	33	5,03
26	7 x 0,160			0,14		1,41	20	7 x 0,320			0,56		5,63
26		18 x 0,10		0,14		1,41	20	19 x 0,203			0,61		6,15
VDE			0,50	0,20		1,96	20		7 x 0,32		0,56		5,63
24			0,511	0,21	87	2,05	18			1,024	0,82	20	8,23
24	7 x 0,203			0,23		2,27	18	7 x 0,404			0,90		8,97
24	19 x 0,127			0,24		2,41	18	19 x 0,254			0,96		9,63
24		11 x 0,16		0,22		2,21	18		19 x 0,26		1,00		10,09
24		14 x 0,15		0,25		2,47	16			1,290	1,31	13	13,07
23			0,574	0,259	66,5	2,30	16	7 x 0,510			1,43		14,30
							16	19 x 0,320			1,53		15,28
							16		30 x 0,25		1,47		14,73

Conversion AWG (28-16) into Metric Dim.: In US-American areas of influence and in the computer industry it is customar to define the dimensions of copper wires and strands in AWG (American Wire Gauge). The table shows bunched strands and wires acc. To VDE (regular typeface) in comparison with concentric AWG strands and AWG solid wires (boldface).

CARRYING CAPACITY OF EUROPALLETS • J-Y(ST)Y

	Rings	J-Y(St)Y 0.6	J-Y(St)Y 0.8
1 x 2	100 m	10000 m	10000 m
IXZ	250 m	14000 m	10000 m
2 x 2	100 m	10000 m	6000 m
2 * 2	250 m	10000 m	7500 m
3 x 2	100 m	5500 m	4000 m
3.72	250 m	7500 m	5000 m
4 x 2	100 m	5500 m	3000 m
4 X Z	250 m	7500 m	4000 m
5 x 2	100 m	4500 m	3000 m
3 . 2	250 m	7500 m	4000 m
6 x 2	100 m	4000 m	3000 m
0 . 2	250 m	5000 m	4000 m
8 x 2	100 m	3000 m	3000 m
0 . 2	250 m	5000 m	3000 m
10 x 2	100 m	3000 m	3000 m
10 X Z	250 m	4000 m	2000 m
12 x 2	100 m	3000 m	
12 X Z	250 m	4000 m	
16 x 2	100 m	3000 m	
10 X Z	250 m	2500 m	
20 x 2	100 m	2500 m	
20 X 2	250 m	3000 m	
24 x 2	100 m	2000 m	
24 X Z	250 m		

	Coils	J-Y(St)Y 0.6	J-Y(St)Y 0.8
	500 m	6000 m	6000 m
1 x 2	1000 m	12000 m	10000 m
2 x 2	500 m	6000 m	6000 m
2 X Z	1000 m	12000 m	10000 m
3 x 2	500 m	6000 m	6000 m
5 X Z	1000 m	10000 m	4000 m
4 x 2	500 m	12000 m	5000 m
4 X Z	1000 m	10000 m	4000 m
5 x 2	500 m	12000 m	5000 m
5 X Z	1000 m	10000 m	2000 m
6 x 2	500 m	12000 m	5000 m
6 X Z	1000 m	4000 m	
8 x 2	500 m	5000 m	2000 m
0 X Z	1000 m	4000 m	
10 x 2	500 m	5000 m	1000 m
10 X Z	1000 m	4000 m	

CARRYING CAPACITY OF EUROPALLETS • NYM

dimension	Rings 50 m	Rings 100 m	one-way drums
1 x 1,5	5000	10000	6000
1 x 2,5	5000	10000	6000
1 x 4	5000	7200	6000
1 x 6	5000	4800	6000
1 x 10	5000	4800	6000
1 x 16	3600	4200	3000
2 x 1,5	5000	4800	6000
2 x 2,5	3600	4200	5000
2 x 4	2100	3000	
2 x 10	1000	3000	
2 x 16	750	1000	
3 x 1,5	6000	6000	6000
3 x 2,5	4800	4800	3000
3 x 4	1500	2000	2000
3 x 6	1500	1500	1000
3 x 10	1000	1000	1000
3 x 16	500	1000	500

dimension	Rings 50 m	Rings 100 m	one-way drums
4 x 1,5	4800	4800	4000
4 x 2,5	3600	3600	3000
4 x 4	1500	2000	1000
4 x 6	1500	1500	1000
4 x 10	750	1000	1000
4 x 16	500	1000	500
4 x 25	500		500
4 x 35	500		500
5 x 1,5	4800	4800	3000
5 x 2,5	3000	3000	2000
5 x 4	1250	1000	1000
5 x 6	1000	1000	1000
5 x 10	500	1000	500
5 x 16	500	1000	500
5 x 25	500		500
7 x 1,5	2100	3600	3000
10 x 1,5	2100	3000	2000
12 x 1,5	1500	2000	1000

CARRYING CAPACITY OF EUROPALLETS • DATA CABLE

type	packing	Simplex		Duplex		size
		packing size	pcs/ pallet	packing size	pcs/ pallet	
	box	14 inch	36	na	na	80 x 120
UTP 5e	500 m	EW 40	12	EW 50	10	80 x 120
	1000 m	EW 50	10	EW 60	4	80 x 120
	box	16 inch	18	na	na	100 x 120
FTP 5e	500 m	EW 40	12	EW 60	4	80 x 120
	1000 m	EW 50	10	EW 76	2	80 x 120
	box	16 inch	18	na	na	80 x 120
UTP Cat 6	500 m	EW 50	10	EW 60	4	80 x 120
	1000 m	EW 60	4	EW 76	2	80 x 120
	bo x	20 inch	12	na	na	80 x 120
FTP Cat 6	500 m	EW 50	10	EW 60	4	80 x 120
	1000 m	EW 60	4	NG 9		80 x 120
U/STP Cat 6	500 m	EW 50	10	EW 60	4	80 x 120
U/STP Cat o	1000 m	EW 60	4	NG 9		80 x 120
	500 m	EW 50	10	EW 60	4	80 x 120
S/STP Cat 6	1000 m	EW 60	4	NG 9		80 x 120
SLAN 600	500 m	EW 50	10	EW 60	4	80 x 120
SLAN OUU	1000 m	EW 60	4	NG 9		80 x 120
x LAN 1000	500 m	EW 50	10	EW 60		80 x 120
X LAIN TUUU	1000 m	EW 60	4	NG 9		80 x 120
	500 m	EW 50	10	EW 76	2	80 x 120
xLAN 1200	1000 m	EW 76	2	NG 9		80 x 120

VOKA LAN – STRUCTURED CABLING OF BUILDINGS

WHY STRUCTURED CABLING?

The fast development of modern business-oriented data processing creates increasingly higher requirements on information-technical interconnection of building complexes, and today cabling becomes an equally important component of infrastructure as e.g. electricity and water supply, telephone or heating.

Structured and service-neutral cabling gains more and more importance for meeting the requirements of progressive information and communication service connection. As a consequence different organisations and committees have been dealing with standardisation of application-independent networks for many years. Results of this are the today known standards such as EN 50173-1 or ISO/IEC 11801 2nd ed., which describe a universally usable cabling system.

This provides the user with the key advantage of adapting applications to the needs and not to existing infrastructure. As a result a future-oriented and future-proof application is warranted

STRUCTURE OF MODERN BUILDING CABLING

The structured cabling of buildings consists of three areas:

Primary area (Campus Backbone)

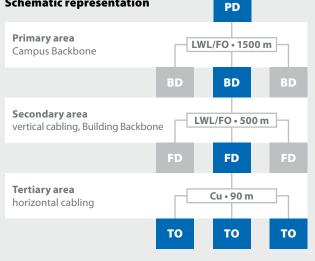
It includes the inter-building connection from the site distributor (1) to the individual building distributors (2) using fibre-optic cables.

Secondary area

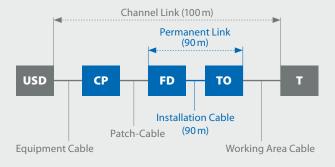
(vertical cabling, Building Backbone)

It includes the connection from the building distributors (2) to the storey distribution boards (3) using balanced copper cables or fibre-optic cables.

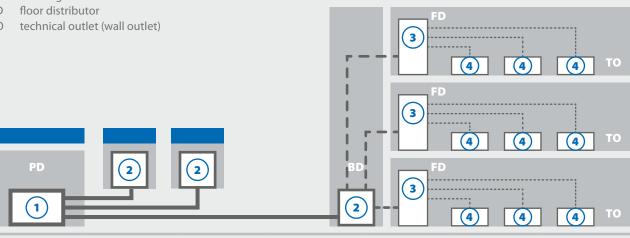
Tertiary area (horizontal cabling)


It includes the area-covering connection from the storey distribution board (3) to the workplace sockets (4) using balanced copper cables.

- PD plant main distributor
- BD building distributor
- FD
- TO


эка

The connection for data transmission from the storey distribution board up to the main site distributor is mainly established using fibre-optic cables. Contrary to this, the phone connection to the site distributor is established using copper technology.


Schematic representation

Channel and permanent link

- USD user specific device
- CP connection point
- technical outlet TO
- terminal Т

VOKA LAN - CLASSIFICATION AND APPLICABLE STANDARDS

REQUIREMENTS ON THE TELECOMMUNICATION CABLE

Accordining to the international standard ISO/ IEC 11801 the requirements of cables are divided into three categories: , 4 and 5. In the 2nd edition of ISO/ IEC 11801 additional categories are specified: Category 6 for bandwidhts up to 250 MHz and Category 7 for bandwidths up to 600 MHz.

Classification and requirements

For data cables in the tertiary and secondary area.

Attenuation (db / 100m)

Frequency (N	⁄IHz)					16		31,25	62,5	100	200	250	300	600	1000
Cat 3	ISO/IEC 11801	2,6	5,6	8,5	9,8	13,1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cat 3/120 Ω	ISO/IEC 11801	f.f.s.	f.f.s.	f.f.s.	f.f.s.	f.f.s.	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cat 5	EN 50288	2,0	4,1	5,8	6,5	8,2	9,3	11,7	17,0	22,0	N/A	N/A	N/A	N/A	N/A
Cat 5e	EN 50288	2,1	4,0	-	6,3	8,0	9,0	11,4	16,5	21,3	N/A	N/A	N/A	N/A	N/A
Cat 5/120 Ω	ISO/IEC 11801	1,8	3,6	-	5,2	6,2	7,0	8,8	12,5	17,0	N/A	N/A	N/A	N/A	N/A
Cat 5/150 Ω	ISO/IEC 11801	f.f.s.	2,2	-	3,6	4,4	4,9	6,9	9,8	12,3	N/A	N/A	N/A	N/A	N/A
Cat 6A	EN50288	2,1	3,8	-	5,9	7,5	8,4	10,5	15,0	19,1	27,6	31,1	34,3	N/A	N/A
Cat 6	EN50288	2,1	3,8	-	6,0	7,6	8,5	10,7	15,5	19,9	29,1	33,0	N/A	N/A	N/A
Cat 7A	EN50288	2,1	37	-	5,8	7,3	8,2	10,3	14,6	18,5	26,5	29,7	32,7	47,1	61,9
Cat 7	EN50288	2,0	3,7	-	5,9	7,4	8,3	10,4	14,9	19,0	27,5	31,0	34,2	50,1	N/A

NEXT (db)

Frequency (N	⁄IHz)					16		31,25	62,5	100	200	250	300	600	1000
Cat 3	ISO/IEC 11801	41	32	27	26	23	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cat 4	ISO/IEC 11801	56	47	42	41	38	36	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cat 5	ISO/IEC 11801	62	53	48	47	44	42	40	35	32	N/A	N/A	N/A	N/A	N/A
Cat 5/120 Ω	ISO/IEC 11801	f.f.s.	58	-	53	50	49	46	41	38	N/A	N/A	N/A	N/A	N/A
Cat 5/150 Ω	ISO/IEC 11801	f.f.s.	58	-	53	50	49	46	41	38	N/A	N/A	N/A	N/A	N/A
Cat 5e	EN 50288	62,3	53,3	51,8	47,3	44,3	42,8	39,9	35,4	32,3	N/A	N/A	N/A	N/A	N/A
Cat 6A	EN 50288	75,3	66,3	_	60,3	57,2	55,8	52,9	48,4	45,3	40,8	39,3	38,1	N/A	N/A
Cat 6	EN 50288	75,3	66,3	-	60,3	57,2	55,8	52,9	48,4	45,3	40,8	39 ,3	N/A	N/A	N/A
Cat 7A	EN 50288	78,0	78,0	-	78,0	78,0	78,0	78,0	78,0	75,4	70,9	69,4	68,2	63,7	N/A
Cat 7	EN 50288	78,0	78,0	-	78,0	78,0	78,0	78,0	75,5	72,4	67,9	66,4	65,2	60,7	N/A

INSTALLATION CABLES AND CONNECTORS - OVERVIEW AND CLASS II

ISO / IEC downwards compatibility of improved Cat 7_A- connectors in combination with Cat 8- Installtion cables. (S/FTP, shielded)

				Conn	ectors		
		Cat 5	Cat 6	Cat 6 _A	Cat 7	Cat 7 _A	improved Cat 7 _A
	Cat 5	Class D	Class D	Class D	Class D	Class D	Class D
Installation Cables	Cat 6	Class D	Class E	Class E	Class E	Class E	Class E
n Ca	Cat 6 _A	Class D	Class E	Class E _A	Class E _A	Class E _A	Class E _A
atio	Cat 7	Class D	Class E	$Class E_A$	Class F	Class F	Class F
stall	Cat 7 _A	Class D	Class E	$Class E_A$	Class F	Class F _A	Class F _A
<u> </u>	Cat 8	Class D	Class E	Class E _A	Class F	Class F _A	Class II

VOKA LAN – CLASSIFICATION AND APPLICABLE STANDARDS

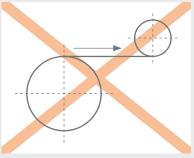
STANDARDS FOR THE DIGITAL TELECOMMUNICATION

	ISO/IEC-Standards International guidelines	s, in Europe only informative (ISO is a worldwide standardized committee)					
ISO/IEC 11801	2nd edition: Information	n technology, generic cabling for customer premises cabling					
	Multicore and symmet	rical pair/quad cables for digital communications					
IEC 61156-1	Generic specification						
IEC 61156-2		Sectional specification					
IEC 61156- 2-1 IEC 61156- 2-2	Horizontal floor wiring	Blank detail specification Capability approval - Sectional specification					
IEC 61156- 2-2		Sectional specification					
IEC 61156- 3-1	Work area wiring	Blank detail specification					
IEC 61156- 3-2	Work area winnig	Capability approval - Sectional specification					
IEC 61156- 4		Sectional specification					
IEC 61156- 4-1	Riser cable	Blank detail specification					
IEC 61156- 4-2		Capability approval - Sectional specification					
	Symmetrical pair/quad	d cables for digital communications with transmission characteristics up to 600 MHz					
IEC 61156- 5		Sectional specification					
IEC 61156- 5-1	Horizontal floor wiring	Blank detail specification					
IEC 61156- 5-2		Capability approval - Sectional specification					
IEC 61156- 6		Sectional specification					
IEC 61156- 6-1	Work area wiring	Blank detail specification					
IEC 61156- 6-2		Capability approval - Sectional specification					
IEC TS 61873	State of art for symmetrical pair/ quad cables with transmission characteristics beyond category 5						
EN 50173-1	CENELEC-Standards European guidelines Information technology - Generic cabling systems (similar to ISO/IEC 11801)						
EN 30173-1	information technology - Generic Cabling systems (similar to iso/iec 11601)						
HD 608	Symmetric pair/quad and multicore cables for digital communications Generic specification						
EN 50167	Sectional specifications	for screened floor cables					
EN 50168	Sectional specifications	forscreened work area and patch cord cables					
EN 50169	Sectional specifications	forhorizontal and building backbone cables					
EN 50288-1	Multi-element metallic Generic specification	c cables used in analogue communication and control					
EN 50288- 2-1	•	or screened Horizontal and building backbone cables up to 100MHz					
EN 50288- 2-2		or screened work area and patch cord cables up to 100MHz					
EN 50288- 3-1	•	or unscreened Horizontal and building backbone cables up to 100MHz					
EN 50288- 3-2		or unscreened work area and patch cord cables up to 100MHz					
EN 50288- 4-1		or screened Horizontal and building backbone cables up to 600MHz					
EN 50288- 4-2		or screened work area and patch cord cables up to 600MHz					
EN 50288- 5-1		or screened Horizontal and building backbone cables up to 250MHz					
EN 50288- 5-2		or screened work area and patch cord cables up to 250 MHz					
EN 50288- 6-1		or unscreened Horizontal and building backbone cables up to 250MHz					
EN 50288- 6-2 EN 50288- 9-1		or unscreened work area and patch cord cables up to 250 MHz or screened Horizontal and building backbone cables up to 1000 MHz					
EN 50288- 10							
EN 50288- 11	Sectional specification for screened Horizontal and building backbone cables up to 500 MHz Sectional specification for unscreened Horizontal and building backbone cables up to 500 MHz						
EN 55022		neasurement of radio disturbance characteristics of information technology equipment.					
	US-Standards						
TIA/EIA-568.C		elecommunication cabling standard					
TSB-36	Technical systems bullet	tin. Additional cable specification for unshielded twisted pair cables					
TSB-67	Transmission porforman	nce specifications for field testing of unshielded twisted pair cabling systems					
130-07	nansmission periorman	ice specifications for here testing of unshielded twisted pair Cabling systems					

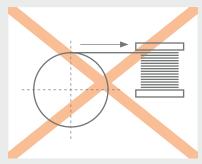
242

VOKA LAN – PLANNING AND INSTALLATION ADVICES

PLANNING ADVICES

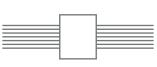

- Fibre-optic cables (FOC) are recommended for establishing the PRIMARY area, whereby the site distributor is usually star-connected to the individual building distributors
- The SECONDARY area can be established using both fibreoptic and copper cables (FOC is recommended), and the structure can be star- or ring-connected.
- The TERTIARY area is designed as star connection consisting of copper cables. 4 pairs covered with a foil screen and having a conductor diameter of 0.51 mm are the minimum recommendation.
- In order to cover future applications and requirements as well, cables with individual pair screening and an overall braid screen should be preferred. (higher near-end-crosstalk attenuation and better EMC behaviour)
- Halogen-free cables are recommended for buildings with a high concentration of material goods or persons.
- When selecting the cable type, the system reserves should be designed for an application period of 10-15 years.
- It is also important that all contained components are either screened or unscreened. Existing standards are for facilitation and safety and should be observed.

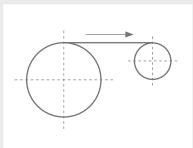
• In the TERTIARY area sufficiently dimensioned cable runs are to be planned due to the high cable density in this section.

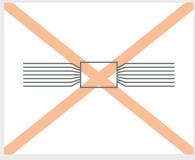

INSTALLATION ADVICES

- In the tertiary area a maximum cable length of 90 m between the storey distribution boards and the workplace sockets should be observed.
- Attention should also be paid to the grounding balance. The grounding potential difference between any grounding points may not exceed 1 V.
- It is to consider that in combined cable runs energy and telecommunication cables are to be separated by a metallic middle web.
- The cables should be used in closed and dry rooms, and the cable runs should be protected against aggressive chemicals and rodents.
- At storey breakthroughs a subsequent fire barrier is necessary to protect the riser.

INSTALLATION GUIDELINES


Do not unwind cables from the drum against their original running direction.


Deflecting the cables is also impermissible.


Cable coils should always be placed in a vertical position and unrolled on the floor to avoid a deflecting effect. If there is not enough space for unwinding the required length, a sufficient bending must be observed when feeding back the cable.

A cable bunch should always lie stretched to avoid potential jammings during installation. If e.g. several cables are layed parallel in cable trays, it is recommended to bunch them using a cable tie or insulating tape.

The drum should always be laid horizontally, perhaps on a balancing stand, to avoid mechanical loads.

Crushing the individual cables is to avoid when assembling them into bunches.

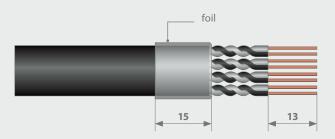
VOKA LAN – PLANNING AND INSTALLATION ADVICES

TENSILE LOAD DURING AND AFTER INSTALLATION

Data cables should be subjected to the lowest possible mechanical loads. In relevant standards 5 daN/qmm² Cu conductor are indicated as maximum permissible traction. Depending on the number of pairs and the overall screen construction, the maximum tensile load values are as follows:

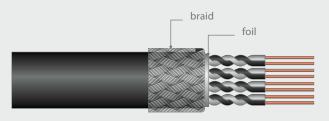
Coductor	ØNW	withou	ıt braid	with	braid
dimension		2 Pairs	4 Pairs	2 Pairs	4 Pairs
AWG 26/7	7x0,16	30 N	60 N	70 N	100 N
AWG 24	0,51	50 N	90 N	90 N	150 N
AWG 23	0,57	-	-	130 N	190 N
Ø 0,6	0,6	70 N	120 N	160 N	240 N
AWG 22	0,64	80 N	150 N	170 N	250 N

Attention should be paid to the fact that cables should not be pulled too strong when bending them around sharp corners or edges. A too strong mechanical load can affect the transmission characteristics.


The minimum bending radius may not deceed the octuple cable diameter. Under installed conditions.

The radius can be reduced to the quadruple cable diameter. In both development and production of **VOKA-LAN** cables care is taken to achieve the most solid and compact cable construction so that substantial losses of transmission parameters do not occur, even if these installation guidelines cannot be observed due to local conditions.

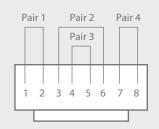
VOKA LAN – INSTRUCTIONS FOR CONNECTION


SCREENED CABLES (FOIL)

The cable ends are to be stripped approx. 10 cm. Then the individual pairs can be straightened corresponding to the pin connection and cut to the required length. The dismantled cable length should be as short as possible to maintain the original twisting. For cable types with aluminium-clad plastic foil care should be taken that the coloured (usually the outer) side is non-conducting. The foil is to be folded back approx. 15 mm over the sheath (so that the conducting side is outside) and fixed with the drain wire. According to EN 50173 maximum untwisting of the pairs may be 13 mm for contacting.

SCREENED CABLES (FOIL + BRAID)

The screen should always be applied as largely as possible. A possibly present drain wire is only to be used for fixing and not for exclusive contacting. The braid is the only component to be folded back, the foil is not required for screen continuity and can be cut off.



жа

PIN CONNECTION

The combination of pins and pairs is described in the applicable standards as follows:

See installation guidelines of the respective component manufacturer for corresponding pair application to the connection system.

Norm	Pair 1	Pair 2	Pair 3	Pair 4
ISO /IEC 11801 EN 50173	Pair num are not c	bers and defined	colours	
EIA/TIA-568-B.2 (T568A) EIA/TIA-568-B.2 (T568B)	whbu-bu	whor-or	whgn-gn	whbn-bn

VOKA LAN – FIRE BEHAVIOUR, FIRE PROPAGATION AND CALORIFIC POTENTIAL

The European standards EN 50167, EN 50168 and EN 50169 require not only screens but also halogen-free outer sheaths for data cables. Consideration and adherence to these standards is particularly recommended for public facilities like hospitals, schools and airports. Moreover, the use of halogen-free cables is reasonable for buildings with a high concentration of persons or material goods.

Cables with PVC sheath

PVC standard materials can propagate flames under fire conditions, and in combination with moisture (e.g. extinguishing water) they can generate hydrochloric acid (HCl) by splitting off hydrogen chloride gas. In addition, burning PVC (polyvinyl chloride) causes strong smoke development, and corrosive damages to buildings and equipment can often reach a degree far more severe than the actual fire damages.

All **VOKA-LAN and X-LAN-data cables** are manufactured in compliance with fire propagation behaviour according to IEC 60332-1, manufacturing in accordance with the stricter IEC 60332-3 is possible on demand.

Cables with halogen-free sheath

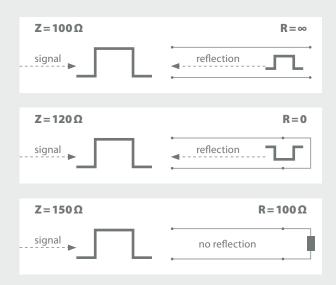
For these cables materials are used, which do not contain halogens (e.g. chlorine) and do not release corrosive gases under fire conditions. The content of toxic gases is also reduced to a minimum, and smoke development and flame propagation are barely present or possible. Designation notes on the cable are e.g. the abbreviations FRNC or LSOH. In detail these designations have the following meaning:

- **FR** flame-retardant (inhibiting flame propagation)
- **NC** non-corrosive (no corrosive constitutents)
- LS low-smoke (low smoke development)
- **OH** zero-halogen (halogen-free)

Using these materials is safety-relevant because free vision in corridors and escape routes is maintained. This, however, requires the use of such materials for other products as well, e.g. for energy cables or cable routing ducts.

All our data cables can be supplied with these halogen-free and flame-retardant sheath materials upon request. Additional costs for these versions are inevitable, but they are very low and therefore virtually non-existant if utmost importance is ascribed to safety.

Calorific potential (kWh/m), (MJ/m)


There are many different combustible installations or products in every building. Some of them are cables and wires, which, although perhaps concealed in intermediate ceilings or ducts, can represent a substantial component, especially in adminstration buildings. These cables have most different energy (calorific) values and can increase the total calorific potential of a building significantly. This fact should already be considered at the planning stage in order to minimise the fire load amounts.

VOKA LAN – KEY CABLE PARAMETERS

Characteristic impedance – Z (Ω)

Characteristic impedance describes the terminal resistance of the cable without any line reflections, i.e. the total electrical power fed into a cable by a signal source is transmitted to the output impedance, only reduced by the cable attenuation. The main function of a data cable is to transfer electrical pulse groups. The higher the data bitrate is required, the higher the frequency bandwidth of the transmission channel (e.g. cable) is to be selected. The output and input impedance values of devices connected to the cable are to be the same as of the cable itself (= adapted). Otherwise transmission can be incorrect due to impulse distortions. The characteristic impedance of balanced cables for telecommunications is standardised according to EN 50173-1 bzw. ISO/IEC 11801:

Attenuation – a (dB)

The cable attenuation reduces the incoming signal amplitude at the output and thereby, among other things, limits the applicable free cable length. Ohmic loss resistances in longitudianal direction are generated depending on the conductor material and cross-sectional area. Additionally the skin effect (current displacement) reduces the effective conductor cross-section depending on the frequency increase. The frequency-dependence of the selected core insulation material causes additional capacitive loss resistances between conductors. The cable attenuation, which is usually indicated for a reference length of 100 m, defines the transmission ratio between send and receive level.

Near-End Crosstalk Attenuation – NEXT (dB)

Crosstalk describes the unintended crossing of signal energy into an adjacent circuit. In this case the electromagnetic field generated by the useful signal of a pair of cores creates a spurious signal in an adjacent pair at the same cable end (NEAR END). The near-end crosstalk attenuation (NEXT) results from the performance ratio "power input at the disturbing pair" to "power output at the disturbed pair" at the same cable end.

FAR-End Crosstalk Attenuation – FEXT (dB)

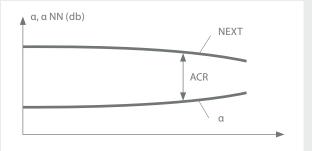
The electromagnetic field of the useful signal at the input of a pair of cores creates a spurious signal on the output side (FAR END) of an adjacent pair. The far-end crosstalk attenuation (FEXT) results from the performance ratio "power input at the disturbing pair" to "power output at the disturbed pair" at the.

ELFEXT (dB)

ELFEXT (Equal-Level Far-End Crosstalk) describes the difference between FEXT and attenuation and could also be designated as Far-End ACR. ELFEXT is a calculated value defining the ratio between crosstalk interference level and receive level.

 $ELFEXT_{(f)} = FEXT_{(f)} - \alpha_{(f)}$

Power Sum NEXT - PSNEXT (dB)


Power sum NEXT is the total near-end crosstalk power sum, i.e. the amount of all spurious signals coupled into a pair of conductors. For twin cables PSNEXT is equal to NEXT. For cables with more than two pairs the difference increases continuously due to the fact that the spurious signals of all adjacent pairs of cores are coupled into one pair of conductors.

Attenuation to Crosstalk Ratio – ACR (dB)

ACR is a characteristic variable for basic transmission quality rating of a cable. It describes the ratio between the strength of the incoming useful signal and the disturbing noise signal of an adjacent pair of cores.

$ACR_{(f)} = NEXT_{(f)} - \alpha_{(f)}$

It is important that the useful signal is always stronger than the noise signal, which is indicated by a positive ACR value. At the highest transmission frequency the recommended ACR value of a LINK should be ≥ 4 dB.

VOKA LAN – KEY CABLE PARAMETERS

Return Loss – RL (dB)

If different characteristic impedance values or inhomogeneities occur within a cable system (e.g. between the cable and a component), the fed signal energy at this disturbing point is partially reflected (=backscatter). Return loss is the ratio between fed and backscattered energy and reflects the homogeneity of a cable or a transmission path.These reflections should be minimised in order to ensure faultless transmission.

Delay Skew (ns)

Delay Skew describes the difference between signal transit times in the indidviual pairs of a cable (caused by different twisting lengths of the pair). This value - it should be as low as possible - is important for multistage transfer methods because the transit time difference is to be balanced by the receiver.

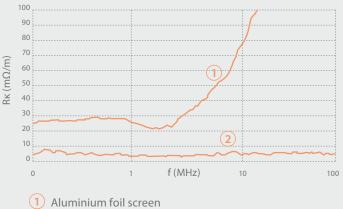
Nominal Velocity of Propagation - NVP (%)

This value indicates the propagation speed of the electrical signal in the cable. Expressed in %, this value is related to light speed in vacuum. The NVP value is also required for length determination of installed cables.

NVP = $\frac{\text{expansion speed of the signal}}{\text{speed of liht in vacuum}} \times 100\%$

NVP = 77 % expresses a transit time of approx.0,33/NVP = 4,2 ns/m

Transfer impedance – $R\kappa$ (Ω/m)


Electromagnetic compatibility (EMC) gains more and more significance along with increasing transmission frequencies in data cables. In order to protect cables against unwanted noise influence and surrounding electrical equipment against interfering transmissions of cables respectively, for today's data cables more and more attention is paid to a sufficient field screen.

Each current-carrying conductor creates an electromagnetic field. The magnetic field of a pair of cores is to a large extent compensated by twisting the cores, while the electric field is compensated by applying a foil and/or braid screen. The transfer impedance (coupling resistance) is frequency-dependent and increases linearly with the cable length. It is indicated in m Ω/m ; the value should be as low as possible. The lower the transfer impedance, the more efficient is the screening effect and thus contributes substantially to the EMC value optimisation of an overall system.

The selection and quality of the earthing point, which should be as low-ohmic as possible for the entire frequency range, is also important for the screening effect.

Using a double screen (foil and overall screen) results in better screening effects especially in the higher frequency range.

The transfer impedance can describe the effectiveness of the cable screen: the lower its value the better the screening effect.

2) Aluminium foil screen and copper braid

BASIC MATERIAL PROPERTIES

material	code	VDE	tempera- ture range (°C)	tensile strength (N/mm²)	elongation (%)	density (g/cm³)	volume resistance (Ω x cm)
Polyvinylchloride	PVC	Y	-30 +70	1025	150300	1,2 1,5	10 ¹² 10 ¹⁵
Polyvinylchloride, heat resistant	PVC	Y	-20+90	1025	150300	1,3 1,4	12 ¹² 10 ¹⁵
Polyvinylchloride, cold resistant	PVC	Y	-40 +70	1025	150300	1,4 1,5	10 ¹² 10 ¹⁵
Polyvinylchloride, flame resistant	PVC	Y	-30 +70	1025	150250	1,3 1,6	10 ¹² 10 ¹⁵
High pressure polyethylene	HDPE	2Y	-50 +70	2030	500	0,95 0,98	10 ¹⁷
Low pressure polyethylene	LDPE	2Y	-50+100	30	800	0,918 0,935	1017
Polyamide	PA	4Y	-40+80	50 180	200300	1,10 1,15	1014
Polybutylen terephtalate	PBTP	-	-60+110	50100	50300	1,3	10 ¹⁶
Polytetrafourethylene	PTFE	5Y	-190+260	1440	240400	2,02,3	10 ¹⁸
Tetraflourethylene-hexaflour- propylene copolymer	FEP	6Y	-100+200	2025	250350	2,02,3	10 ¹⁸
Ethylen-tetraflourethylen	ETFE	7Y	-100 +150	40 50	100300	1,6 1,8	10 ¹⁶
Polypropylene	PP	9Y	-50 90	30 50	300	0,91	10 ¹⁷
Polyurethane	PUR	11Y	-40+100	30 45	300600	1,15 1,20	10 ¹²
Thermoplastic polyolefin elastomer	TPE	12Y	-70+125	325	280650	0,9 1,2	10 ¹²
Silicone rubber	SI	2G	-60+180	5 10	200350	1,2 1,3	10 ¹⁵
Ethylene propylen ruber	EPM/EPDM	3G	-30 +125	5 20	200450	1,3 1,6	1014
Ethylen vinyl acetate	EVA	4G	-30 +125	5	200	1,3 1,5	10 ¹³
Chloropren-rubber	CR	5G	-40+100	25	450	1,4 1,7	10 ¹³
Flame retardant Polyethylene	FRPE	Н	-30+70	5 10	100150	1,4 1,6	10 ¹³

material	code	Shore- Hardness A.D	resistance to weathe- ring (t)	fuel resistance	oil resistance	flammability
Polyvinylchloride	PVC	70 95	moderate	moderate	good	self-extinguishing
Polyvinylchloride, heat resistant	PVC	70 95	moderate	moderate	good	self-extinguishing
Polyvinylchloride, cold resistant	PVC	70 95	moderate	moderate	good	self-extinguishing
Polyvinylchloride, flame resistant	PVC	80 90	moderate	moderate	good	not flammable
High pressure polyethylene	HDPE	6062	good	poor	moderate	flammable
Low pressure polyethylene	LDPE	43 50	moderate	poor	moderate	flammable
Polyamide	PA	6070	good	moderate	good	flammable
Polybutylen terephtalate	PBTP	80 (D)	good	good	good	flammable
Polytetrafourethylene	PTFE	55 65	very good	very good	very good	not flammable
Tetraflourethylene-hexaflour- propylene copolymer	FEP	5560	very good	very good	very good	not flammable
Ethylen-tetraflourethylen	ETFE	7075	very good	very good	very good	not flammable
Polypropylene	PP	55 60	moderate	moderate	moderate	flammable
Polyurethane	PUR	80100	very good	good	good	self-extinguishing
Thermoplastic polyolefin elastomer	TPE	50 90	very good	good	very good	flammable
Silicone rubber	SI	4080	very good	poor	moderate	high ignition temperature
Ethylene propylen ruber	EPM/EPDM	65 85	good	poor	poor	flammable
Ethylen vinyl acetate	EVA	7080	good	poor	poor	flammable
Chloropren-rubber	CR	55 70	very good	poor	good	self-extinguishing
Flame retardant Polyethylene	FRPE	45 50	good	moderate	moderate	self-extinguishing

VOKA

INTERNATIONAL IDENTIFICATION COLOURS FOR TEMPERATURE MEASUREMENT TECHNOLOGY

Platinum- 13% Rhodium + **+** 2 R 1 _ Platinum + Platinum- 10% Rhodium S Ð 1 Ð _ Platinum + Platinum- 30% Rhodium 33 1 В _ Platinum- 6% Rhodium Iron + **±** • J Copper-Nickel _ + Copper . 2 1 Т Copper-Nickel _ Nickel-Chrome + **- +** Е _ Copper-Nickel = ± **±** 1 **±** Nickel-Chrome + Ð 9 Ð Κ Nickel -2 _ + Nickel-Chrome-Silicon Ν _ Nickel-Silicon + Copper U - 2 _ Copper-Nickel Iron + 2 L _ Copper-Nickel

THERMOCOUPLES

Source: Reckmann GmbH Mess + Regeltechnik

Cable	e type
TE	thermocouple
THL	thermoline

Construction

Li	strand	
ed	solid conductor	

Core insulation

2G	silicone insulation
5Y	PTFE foil
8Y	polyimide foil
Gf	mica foil
Gu	E-glass lapped (use of glass fibre yarn
	with temperature range up to 350°C)
GI	E-glass braided
R	R-glass (use of special glass fibre yarn
	with temperature range up to 750°C)
RGu	R-glass lapped
RGI	R-glass braided
U	eco-friendly impregnation
В	cores coloured or with (coloured) tracer thread
	(only for multi-wired cables and stranded cores
J	protective earth wire

core stranding (only at thermocouples and thermolines)

ον	oval stranding
vs	stranded

Outer braid

S	steel wire braid
VA	stainless steel braid

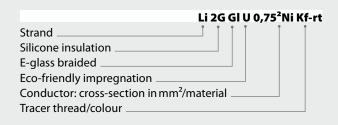
(Coloured) tracer thread

Kf	(coloured) tracer t	hread
----	-----------	------------	-------

- **X** second (coloured) tracer thread crossed
- to first (coloured) tracer thread

Construction of strand

0,22 ²	7 x 0,20 mm ²
0,35²	11 x 0,20 mm ²
0,50 ²	16 x 0,20 mm ²
0,75 ²	24 x 0,20 mm ²
1,00²	32 x 0,20 mm ²
1,00²	7 x 0,44 mm ²
1,50²	30 x 0,25 mm ²
1,50 ²	48 x 0,20 mm ²
2,00 ²	40 x 0,25 mm ²
2,50 ²	49 x 0,25 mm ²
2,50 ²	84 x 0,20 mm ²
4,00 ²	84 x 0,25 mm ²
6,00 ²	126 x 0,25 mm ²
10,00 ²	203 x 0,25 mm ²


Colours

nt	natural-coloured
	(ecru)
ws	white
sw	black
bl	blue
rt	red
bn	brown
gr	grey
ge	yellow
gn	green
or	orange
rs	pink
gg	green/yellow

PRODUCT DESCRIPTION FOR SINGLE-CORE CONNECTION CABLES

	Li GI U 0,75 ² Ni Kf-rt
Strand	
E-glass braided	
Eco-friendly impregnation	
Conductor: cross-section in mm ² /materi	al
Tracer thread/colour	

	Li RGI U 0,75²Ni Kf-rt
Strand	
R-glass braided	
Eco-friendly impregnation	
Conductor: cross-section in mm ² /mate	erial
Tracer thread/colour	

*without (coloured) tracer thread = complete colouring: only colour (to be indicated)

Conductor materialCucopperCu-vnoptical nickel-plated copperCu-vn-pfnon-porous nickel-plated copperCu-vssilver-coated copperCu-vztinned copperNinickel

PRODUCT DESCRIPTION FOR MULTI-CORE CONNECTION CABLES

One conductor material	Two conductor materials
LiGIUSJB 3x0,75 ² NiKf-rt	Li GI U S J B 2x0,75 ² Ni + 1x1,00 ² Cu-vn Kf-rt
Strand*/E-glass braided i	T T
Eco-friendly impregnation/	Conductor material 1
steel wire braid/protective earth wire/coloured core	Number of conductors/cross-section in mm ² /material
Conductor material	Conductor material 2
Number of conductors/cross-section in mm ² /material	Number of conductors/cross-section in mm ² /material
Tracer thread/colour	Tracer thread/colour

Two conductor materials and one thermocouple (TE)

•	• •				
	ELIGIUSJB	2x0,75 ² Ni + 1	x1,00 ² Cu-vn +	2x0,35 ² Typ J sw	2xKf-rt-X
Thermocouple	İ İ	T	Ī	f -	Ī
Strand/E-glass braided					
Eco-friendly impregnation/steel wire braid/					
protective earth wire/coloured cores					
Conductor material 1: number/cross-section in mr	n²/material				
Conductor material 2: number/cross-section in mr	m²/material				
Thermocouple (TE): number/cross-section in mm ²	/element type/cc	lour			
Colour identification outer braid: number/Tracer th	road (colour/char	o doccription (aarallal ar crocc	ad)	

Colour identification outer braid: number/Tracer thread/colour/shape description (parallel or crossed) _

PRODUCT DESCRIPTION FOR THERMOCOUPLEE UND THERMOLEITUNGEN (examples)

Single cores twice lapped • oval stranding

TE Li	i <mark>Gu G</mark>	u ov i	2x0,20 ²	Typ K gn
Thermocouple i	11			1
Strand*				
Insulation 1: E-glass lapped				
Insulation 2: E-glass lapped				
Construction: ovale stranding*				
Construction of conductor				

Single cores lapped and braided • stranded

TE Li Gu Gl vs 2x0,50² Typ K gn Thermocouple _______i Strand* _______i Insulation 1: E-glass lapped ______i Insulation 2: E-glass braided ______ Construction: stranded ______ Conductor _____

Single cores lapped and braided • stranded • outer steel wire braid

	TE Li Gu Gl vs S 2x0,50° Typ K gi
Thermocouple	
Strand*	
Insulation 1: E-glass lapped	
Insulation 2: E-glass braided	
Construction: stranded	
Steel wire braid*	
C = 1	

Conductor: number/cross-section (mm²/strand) bzw. diameter (mm/solid conductor)/element type*/colour identification

Strand*	only if strand is required, else solid conductor
Oval stranding*	2 conductors parallel, replace with »STR« when stranding
Steel wire braid*	iron braid, replace with »SS« in stainless steel braids
Element type*	thermocouple (thermopair); with addition "X" thermoline

CODE FOR HARMONIZED CABLES ACC. TO DIN 57 292/ VDE 0292

1 Identification according designation

- H harmonized designation
- A national type

2 nominal voltage U₀/U

03	300 / 300V	
05	300 / 500V	
07	450 / 750V	

3 Insulation

V PVC

	R	natural and/ or synthetic rubber
--	---	----------------------------------

S silicone rubber

4 Sheath

V	PVC
R	natural and/ or synthetic rubber
Ν	chloroprene rubber
J	glass fibre braid
Т	textile braid

5 Particularities in construction

н	flat, divisible cable
H2	flat, non-divisible cable

6 Conductor

U	solid
R	multi-wired
Κ	fine-wired for fixed installation
F	fine-wired for flexible installation
н	extra fine-wired
Y	tinsel wire

7 Number of cores

8 Protective conductor

- X without protective conductor
- **G** with protective conductor
- 9 Nominal conductor cross-section in mm²

EXAMPLES FOR CODE DESIGNATION

PVC-sheathed wire 2,5 mm² greenyellow H07V-U 2,5 gnye

Light tough-rubber sheathed wires 3 cores, 1,5 mm ² , with protective conductor green-yellow 2cores, 1,5 mm ² , without protective conductor	H05RR-F 3G1,5 H05RR-F 2X1,5
PCV-sheathed wire round, 4 cores, 2,5 mm ²	H05VV-F 4G2,5

CODE FOR POWER CABLES ACC. TO VDE 0276

1 Identification VDE standard Ν Х in resemblance to VDE Type of conductor 2 А aluminiun conductor copper conductor **3** Insulation Υ PVC 2X cross-linked PE (VPE) 4 Concentric conductor, screen concentric copper conductor (helical) С CW concentric copper conductor (wave-form) 5 Sheath γ PVC 2Y PE Protective conductor 6

- **O** without protective conductor**J** with protective conductor
- 7 Number of cores

8 Nominal conductor cross-section in mm²

9 Conductor

- **R** circular conductor
- S sector-shaped conductor
- E solid-wired
- M multi-wiredConductorquerschnitt (mm²)

10 Nominal voltage

U₀/U

EXAMPLES FOR CODE DESIGNATION

Power cable acc. to standard, insulation and sheath from PVC, with green-yellow core, 3 cores, nominal cross-section 16 mm², solid circular conductor, nominal voltage 0,6/1 kV

NYY-J 3 x 16 RE 0,6/1 kV

Power cables acc. to standard, aluminium conductor, insulation and sheath from PVC, with protective conductor, 3 cores, with wave-form concentric conductor, nominal crosssection 25 mm², solid sector-shaped conductor, nominal voltage 0,6/ 1kV

NACWY-J 3 x 25 SE 0,6/1kV

CODE FOR TELECOMMUNICATION LINES

F

L

С

D

(L) (St)

(Z)

(K)

Υ

Υv

Yw

2Y

н

F2

Sheath

5

petroleum

jelly filling

metal foil

(mS) magnetic screen

element

PVC

PE

LSOH low smoke

copper braid

aluminium sheath

copper spinning

aluminium tape

screen (AI/PE)

strain bearing

PVC reinforced

halogen-free

flame retardant

zero halogen

non corrosive

PVC flame ret. IEC

332.3 (LOI>30)

FRNC flame retardent

PVC heat resistant

copper tape screen

- 1 Basic Type
 - A outdoor cable
 - **G** mining cable
 - J installation cable S switchboard cable
 - switchboard cabledistribution cable

2 Additional Information

- **B** lightning protection
- J induction protect.
- E electronics

3 Insulation

maan	
Y	PVC
2Y	PE
02Y	Foam-PE
02YS	Foam-Skin PE
5Y	PTFE
6Y	FEP
7Y	ETFE
9Y	PP
09YS	Foam-Skin PP

4 Construction over conductor stranding

CODE FOR CONTROL CABLES

Idei	Identification		
Ν	VDE standard		
(N),	X in resembl. to VDE		

2 Insulation

Υ	PVC
Х	cross-linked,
	thermoplastic
	synthetic materials

- **G** elastomers **HX** cross-linked,
- halogen-free materials **2Y** PE

3 Type of cable

- A insulation cableD solid cable
- **AF** flexible stranded
- cable
- F flexible cable for fittings

L	flourescent
	tube cable
LH	direct line, minor
	mechanical stress
МН	direct line, medium
	mechanical stress
SH	direct line,heavy
	mechanical stress
SSH	direct line,
	specific stress
SL	control cable/
	welding cable
S	control cable
LS	control cable
	with minor
	mechanical stress
FL	flat flexible cable
Si	silicone cable
Z	flat twin
	flexible cord
GL	glass fibre yarn

8

7

- FR PVC flame retardent IEC 332.3
- 6 number of stranding elements

Str	anding element
1	Single conductor
2	Pair
3	Triple
4	Quad
5	Five

8 Nominal conductor cross-section in mm²

9 Stranding element

St O	star-quad (in
	general)
St I	star-quad (tele-

JUI	stal-quad (tele-			
	comm. cable)			
St III	star-quad			

(local cable) **St IV** star-quad for transmission up to 120 kHz

St V	star-quad for
	transmission
	up to 550 kHz
St VI	star-quad for
	transmission
	up to 17 MHz
TF	carrier frequency
Ρ	paired
Кх	coaxial pair
DM	Dieselhorst-
	Martin-quad
PimF	pair in metal foil
VimF	quad in metal foil

10 Type of stranding

Lg	layer-stranding

БЦ	unit stranding

EXAMPLES FOR CODE DESIGNATION

200 paired outdoor telephone cable for local grids, foam-skin PEsheathed, composite layer sheath from coated aluminium tape and PE outer sheath, star-quad unit stranding, conductor diameter 0,4 mm

A-02YS(L)2Y 200x2x0,4 STIII Bd

Li bunched conductor acc. to VDE 0812 LiF bunched conductor acc. to VDE 0812, extra fine stranded

Par	ticularities				
Т	support wire				
Ö	enhanced				
	oil-resistance				
U	flame-resistant				
w	heat resistant				
FE	insulation integrity				
С	copper wired braid				
D	copper wire				
	helically winded				
S	steel wired braid				
Sheath					

 X crosslinked, thermoplastic synthetic materials
 G elastomers
 H halogen-free materials
 PUR polyurethane

6 Core identification

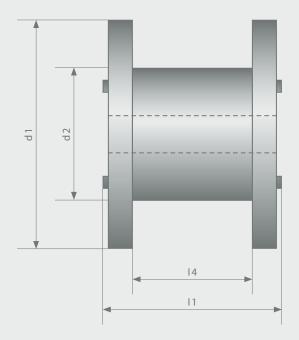
0	without protective
	conductor

- J with protective
- conductor Z cores with
- number-printing
- **B** cores with
- colour-coding

7 Number of cores

8 Nominal conductor cross-section in mm²

5


γ

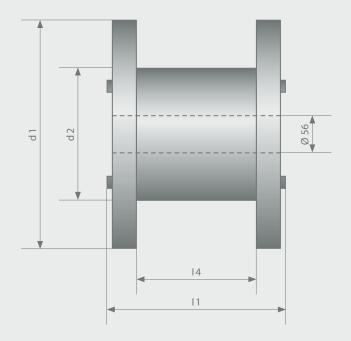
PVC

4

KTG CABLE DRUMS

DRUM-TABLE

Nominal size of drum	d1 flange diameter mm	d2 core diameter mm	l1 width overall mm	l4 width internal mm	approx. drum weight kg	Max. carrying capacity kg	surcharge pledged amount EUR
Plastic drums							
050	500	150	456	404	4	100	17,38
070	710	355	510	400	15	250	52,92
080	800	400	510	400	16	350	68,77
090	900	450	680	560	23	400	92,03
100	1000	500	704	560	32	500	108,39
Wooden drum	15						
051	500	150	470	410	8	100	16,36
071	710	355	520	400	25	250	35,53
081	800	400	520	400	31	400	44,99
091	900	450	690	560	47	750	57,78
101	1000	500	710	560	71	900	82,57
121	1250	630	890	670	144	1700	155,18
141	1400	710	890	670	175	2000	186,88
161	1600	800	1100	850	280	3000	305,24
181	1800	1000	1100	840	380	4000	396,25
Wooden drum	ns with iron hoop	ing					
120	1250	630	890	670	165	170	177,16


KTG CABLE DRUMS

CAPACITY (Windable cable length in meters)

Case 051 071 081 091 101 121 141 161 181 201 221 251 281 man man 3 5324		Nominal size of KTG-cable drum													
3 5324 -		051	071	081	091	101	121	141	161	181	201	221	251	281	
4 266 178 278 679 670															
5 1578 1588 2238 3080 1569 150<															
6 1508 2328 3080 5679 1 <th1< th=""> 1 <!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<>															
1 1 1 1 2 1			2328	3080	5679										
9 665 1026 1358 2510 3186 7						5286									
10 537 829 1097 2029 2576 5038 10 10 10 10 10 11 13 443 663 904 1674 2125 4157 526 17 173 173 573 1044 172 3488 4444 17 17 173 174 179 1348 1744 174 120	8	844	1303	1724	3183	4040									8
111 443 663 904 1674 2125 4157 5267 776 176	9	665	1026	1358	2510	3186									9
12 371 573 758 1404 1782 3488 4444 1	10	537	829	1097	2029	2576	5038								10
13 315 487 644 1194 1516 2967 3780 F< F F< F< F< F< F< F F< F F< F< F F<		443	683	904	1674	2125	4157	5296							11
142714185541028130422553255559511111115235364481893113422222831486856391111516172182281473693880172421973781438041111181622503316177831361957358301934984744549111		371	573	758	1404	1782	3488	4444							
1523536448189311342222283148685639 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
16 206 319 442 784 995 1950 2484 4274 4959 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>															
117182281373693880172421973781438011111181622503316177831536195733683902528711															
1816225033161778315361957336839025287IIIIII1922427755370113761753301934884740II171701702002022022057498632112114192448283638455357I121221602123985071002127922112563347448455857I222231431913594585071002127922112563347448455857I2222412817135945850710021279201625533153440158692622514315529437675096116691935262436704443124251101102523426858791529177424063864099586927261041041662224313625353165311091380188524434002027116223124263532162139018852443403123281041042432433136254531109138014622827140022810															
1922429755370113761753301934984740repreprep19200202267498632124015802722315342745949120021179221160212384565110212192211256334444845585712232314319135945890611592006232531534001532212332412817232441482310531826211828140053221225611511512937446858571<66											5207				
20202267498632124015802722315342745949I.I.2021179238444565111214192448283638455357I.212122160212398507100217922102525314448558571.232231431913994849061159200623253147401248541.2241281723244148231053182621182871401248541.2425115155294376750961166919352624367044431.27526104140267342685879152917472406388407958692.6271081281742442833136256851197139018852647321146302.93010187128174244545597111215082125258237323233101872424916331109128174624428043003031313214719139150789211311585254732114630430331414148173244<		102													
21179238444565111214192448283638455357Image by the state st												5949			
22 160 212 398 507 1002 1279 2211 2563 3474 4845 5857 1 223 233 143 191 359 458 906 1159 2006 2325 3153 4401 5322 1 233 24 128 128 123 324 414 823 1050 1826 218 2871 4012 2464 245 25 115 155 294 342 685 879 1529 174 2406 3368 4079 5869 266 27 104 140 267 342 655 877 742 1296 1634 2039 281 3469 498 288 293 116 223 287 577 742 1296 164 2039 281 3469 498 288 293 116 218 174 240 633 1197 128 124 249 430 303 304 116 224 491 633 1197 128 146 284 280 333 33 313 157 240															
23143191359458906115920062325315344015322123324128172324414823105318262118287140124854L24425115155294376750961166919352624367034854079586925261041402673426858771529174240531003757540927281162182433136258071406163122123100375754092728116216204223287577742129615042039286134094908239301116212223424491633110912881746245429043003013131161172223454587102911861612218127714002313321161171592064245459571112150821252525373231233116112116234444547433455111215081215111331331334116114711913915078921137140515291635313315212506133 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5857</td> <td></td> <td></td>													5857		
24128172324414823105318262118287140124854L242511515529437675096116691935262436704443L252610414026734266587915291774240633684079586926727L12824733136258071406163122123601375754092728L116223287577742129615042039286134094982829L1062042635326651197139018852647321146302930LL1722234545871029111615082125258237231331LL1722234545871029111615082125258237231333LL1471913915076921013140619822411348733334LL1147173364472833968131318532553265344353LL117153317412730848115016271982247356364LL116340414779															
261041402673426858791529177424063368407958692627128128243313625807140616312212310037575409272811622328757774212961504203928613469498928291061062042635326851107139018852647321146302930010710616122282771400231140023113101121508212525823732323311071592064245459571112150821252582373233334104147191391507892103714061982241134873333410414017233644778339681313185322553265344356117136147340441779946128171719822285356364144148179341441779946128131318532255326534537614714814013942253563566447461079152918632174374384145146340 <td< td=""><td></td><td></td><td>128</td><td>172</td><td>324</td><td>414</td><td>823</td><td>1053</td><td>1826</td><td>2118</td><td>2871</td><td>4012</td><td></td><td></td><td>24</td></td<>			128	172	324	414	823	1053	1826	2118	2871	4012			24
2712812824331362580714061631221231003757540927728116216223287577742129615042039286134694989282910620426353268511971390188526473211463029930116128174624542980430030031131112817462454298043003013111611712345458710291196161222812771400231133116117139231565957111215082125225132653265333116116141191391577364472833968131318532255326534435311715331741273084811501627198228753663741161161442963666684766107915291636277437338411611624431955063384811501529163624934939311611624431955065384812661473246349394116116244319550653557 <t< td=""><td>25</td><td></td><td>115</td><td>155</td><td>294</td><td>376</td><td>750</td><td>961</td><td>1669</td><td>1935</td><td>2624</td><td>3670</td><td>4443</td><td></td><td>25</td></t<>	25		115	155	294	376	750	961	1669	1935	2624	3670	4443		25
281162232875777421296150420392861346949892829106204263532665119713901885264732114630293011818724249163311091288176624542980430030311172223454587102911961612228127714002313211159206424545957111215082125258232653443341114719136447283396813131853225532653443541164147153317412730848115016271982287536637411153317412730848115016271982287536637411153317412730848115016271863270437384111<33	26		104	140	267	342	685	879	1529	1774	2406	3368	4079	5869	26
299100100020402630532066851197139018852647321146302993001001681011617223449163311091288174624542980430030131110017222345458710291196161222812771400231132010015920642454595711121508212525823732323333100114719193915078921037140619822411348733334410136177364472833968131318532255326534435310010111313141177990612281735112883634435410111711533174127308481104143817532548353364100111715332736264374810141438175325483633731001011332773626437481014143817532448349393100101133277362643748101414381753244834939410110113327736264374810141438	27			128	243	313	625	807	1406	1631	2212	3100	3757	5409	27
301872424916331109128817462454298043003031	28			116	223	287	577	742	1296	1504	2039	2861	3469	4998	28
3111 <th< td=""><td></td><td></td><td></td><td>106</td><td>204</td><td>263</td><td>532</td><td>685</td><td>1197</td><td>1390</td><td>1885</td><td>2647</td><td>3211</td><td></td><td></td></th<>				106	204	263	532	685	1197	1390	1885	2647	3211		
323341592064245459571112150821252582373233233341441471913915078921037140619822411348733334441761361773644728339681313185322553265344355412616434044177990612281735211260613553664411715331741273084811501627198228753663764410113327736266364810141438175325483733804410113327736266370495413541653240339393404426033960570495413541653240339400441011342293005376638991277156022704044144410121624431955766389912771560227040444144101216244319557558757107913201264444534441922524535287561675 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>															
3331441441441491339155078892103714061982241134873333441441472833396813131853225532653443551441740906122817352112606135536614477990612881150162719822875366376144141779906107915291863270437338714414177984811501627198228753663771441441417798481150162719822875366388144141141141141817532744373367369101414381753254838839914414414114314114381653240339336057041954135416532403393400144144141144141144141144141414414 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
344															
355111113341799111133331111113311 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
36117153317412730848115016271982287536637															
37110814229638668879610791529186327043773810110113327736264374810141438175325483839111101242603396057049541354165324033940111124260339605704954135416532403394011111124431957066389912771560227040411															
381011132773626437481014143817532548383960570495413541653240339406060570495413541653240339406060704954135416532403394060608991277156022704041606010822930053766389912061473214642606060537625848120614732146414260601012162835075918011140139420324243606060110121628350759180111401394203242436060601002162234535287161022125118274444606061111225407474643920112816504646606061111213386450610874102215704748606061113111213386450610874102014554749606061111111213386450610874 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
39MMM12426033966057049541354165324033940MMM															
404041414157066389912771560227040411010822930053762584812061473214641424101216283507591801114013942032424344101216283507558757107913201926434444101192252453528716102212511827444544131238429500678969118717364546441612133864506108741022150047484415320236742857981310201455484944154145192331406551791971142549															
42424344101216283507591801114013942032424344444444444444454445102125118274445444444444444454444454445444510211211827444646464617122540747464392011281650464746464616121338645061087410721570474849464646153202367428579813102014954849464646145192331406551791971142549										663					40
43434455875710791320192643444419225245352871610221251182744454546461812384295006789691187173645464646171225407474643920112816504647464646161213386450610874107215704748464646153202367428579813102014554949464646192331406551791971142549	41					108	229	300	537	625	848	1206	1473	2146	41
44 1	42					101	216	283	507	591	801	1140	1394	2032	42
45 6 18 238 429 500 678 969 1187 1736 45 46 17 225 407 474 643 920 1128 1650 46 47 643 920 1128 1650 46 48 643 920 813 1070 1770 47 49 643 920 813 1020 145 47 48 643 920 813 1020 145 48 49 644 645 920 813 1020 145 48	43								479	558	757	1079	1320		43
46 101 225 407 474 643 920 1128 1650 46 47 101 101 213 386 450 610 874 1072 1570 47 48 101 153 202 367 428 579 813 1020 1495 48 49 101 101 145 192 331 406 551 791 971 1425 49								252		528	716				
47 161 213 386 450 610 874 1072 1570 47 48 153 202 367 428 579 813 1020 1495 48 49 155 145 192 331 406 551 791 971 1425 49															
48 153 202 367 428 579 813 1020 1495 48 49 6 6 145 192 331 406 551 791 971 1425 49															
49 145 192 331 406 551 791 971 1425 49															
30 137 182 313 387 324 733 926 1360 50															
	50						137	182	515	587	524	/53	920	1300	50

NON-RETURNABLE DRUMS

DRUM-TABLE

Nominal size of	d1 flange	d2 core	l4 width	l1 width	Flange	approx.drum						
drum	diameter		internal	overall	thick	· · weight	Cub					
	mm	mm	mm	mm	mm	kg	m²					
Plywood drums												
040	400	150	404	420	8	3,3	0,05					
050	500	150	404	420	8	3,5	0,11					
060	600	150	404	420	8	6,0	0,15					
076	755	315	396	420	12	9,3	0,25					
Wooden drum	s											
70	710	355	400	510	36	20,0	0,26					
80	800	400	400	510	36	24,0	0,33					
90	900	450	500	600	36	44,0	0,49					
90	900	450	560	650	36	44,0	0,53					
100	1000	500	500	600	36	48,0	0,60					
100	1000	500	560	650	35	48,0	0,65					
120	1200	600	600	725	46	67,0	1,04					
140	1400	710	710	896	60	136,0	1,76					
160	1600	800	900	1080	70	167,0	2,76					
180	1800	1000	900	1120	70	275,0	3,63					
200	2000	1250	1120	1350	70	343,0	5,40					
2200	2200	1400	1220	1450	90	632,0	7,02					
2500	2500	1600	1220	1450	90	681,0	9,06					

NON-RETURNABLE DRUMS

CAPACITY (Windable cable length in meters)

Cable	Nominal size of drum												
Cable Ø mm	EW40	EW50	EW60	EW76	NG8	NG9	NG10	NG12	NG14	NG16	NG18	NG20	Cable Ø mm
2	5727												2
2	5737 2550	6181	9615										2 3
4	1434	3477	5409	6246									4
5	756	1833	2851	3998	4800								5
6	525	1273	1980	2776	3300	5300							6
7	386	935	1454	2040	2400	3900							7
8	295	700	1100	1562	1800	2900							8
9	233	566	880	1200	1400	2300	2700						9
10	176	425	662	928	1100	1700	2100						10
11		352	547	767	900	1400	1800						11
12		295	460	644	780	1200	1500	2600					12
13		252	392	549	660	1000	1200	2200					13
14		217	338	473	570	900	1100	1900					14
15		189	294	412	500	780	950	1600	2700				15
16				363		660	850	1400	2400				16
17				321		570	750	1300	2100				17
18				286		500	670	1100	1900				18
19				257			600	1000	1700				19
20				232			500	940	1500	2200	3300		20
21								850	1400	2000	3000		21
22								780	1200	1800	2700		22
23								700	1100	1600	2500		23
24								650	1000	1500	2300		24
25								600	950	1400	2000		25
26								560	900	1300	1900		26
27								500	850	1200	1800		27
28									750	1100	1700		28
29									700	1000	1600		29
30									680	980	1500		30
31									600	900	1400	2000	31
32									550	850	1300	1970	32
33									500	800	1200	1850	33
34										750	1100	1750	34
35										700	1150	1650	35
36										680	1000	1550	36
37										640	980	1450	37
38										600	930	1400	38
39										580	890	1300	39
40										550	840	1250	40
41										520	800	1200	41
42										500	760	1150	42
43 44											730	1100	43
											700	1000	44
45 46											660 640	990 950	45 46
46											640 610	950 910	46
47											580	870	47
40											560	840	40
49 50											530	840 800	49 50
50											550	000	50

PROPERTIES AND TEST SPECIFICATIONS

BEHAVIOUR UNDER FIRE CONDITIONS

The flammability of cables and wires is judged in accordance with a variety of standards.

Flame resistance acc. to

- DIN VDE 0482 Part 332-1
- EN 60332-1
- IEC 60332 Part 1

Flame resistance describes the property of a cable to resist to flame propagation. This property is demonstrated by testing the flammability.

The test is conducted on single cores or cables vertically secured and exposed to a standard test flame for a specified time period of 60 s.

The test is cosidered to be passed where flaming of the specimen ceases of its own accord within a determined length.

Flame retardent acc. to

- DIN VDE 0482 Part 332-2
- EN 60332-3
- IEC 60332 Part 3

Contrary to flame resistance a cable is designated as flameretardant if it is capable of retarding flame propagation after a flaming period of 20 min. For this practice-oriented test a cable bunch attached to a vertically arranged ladder is used. The test is considered to be passed where flaming of the specimens ceases of its own accord after a flaming period of 20 min.

CORROSIVE GASES

Combustion gases developing during fire are very problematic. They can be extremely toxic and very dangerous for people and animals. In combination with extinguishing water these combustion gases also generate aggressive reaction products (acids), which can cause serious damages to facilities and buildings.

The test for corrosiveness of combustion gases is conducted acc. to

- DIN VDE 0482 Part 267
- EN 50267
- EN 60754

The pH-value and conductivity are to be determined in order to judge the corrosiveness of developing gases. This test also allows the detection of very small amounts of halogen-free components. The combustion of synthetic materials, e.g. PVC, causes dense smoke development and a drastic deterioration of visibility conditions. As a consequence escape routes may be impassable, and the work and rescue efforts of fire brigades become more difficult.

The **density of smoke** developing under fire conditions is judged acc. to

- DIN VDE 0482 Part 1034
- IEC 61034

This test method allows smoke density measurement of burning cables under practice-oriented conditions.

The smoke density of various materials is determined by means of comparative testing . A photometric system equipped with a light source (100 W) and a selenium photocell records the light obscuration caused by developing smoke.

VOKA

PROPERTIES AND TEST SPECIFICATIONS

INSULATION INTEGRITY

Many conventional cables show malfunctions due to melting of synthetic materials under fire conditions. As a consequence short circuits cause downtimes of neccessary equipment. Applicable constructive measures and the use of appropriate materials can help maintain the insulation integrity of a cable for a certain time period. Testing is conducted acc. to

- DIN VDE 0472 Part 814
- DIN VDE 0482 Part 200
- EN 50200

This test method determines the insulation integrity of cables and insulated wires under direct fire exposure. Cables tested in accordance with this standard are marked with **FE 180** behind the abbreviated construction designation, whereas **FE** is the abbreviation for fire exposure, not for functional endurance.

The specimen of a single cable is secured above the burner in a horizontal position and connected to a voltage source (power cables and insulated wires are tested at 400 V, telecommunication cables and wires at 110 V). Metallic screens are connected together and earthed.

The burner is to be ignited, and the flame is to be adjusted to a temperature of at least 750°C by means of a temperature sensor. The energised specimen is then to be lowered into the flame, and a timer is to be started.

Unless otherwhise specified in the relevant product specifications, the test period shall be 180 min.

The test shall be cosidered to be passed where no short circuit or current flow interruption occurs within the scheduled duration.

FUNCTIONAL ENDURANCE

The test of insulation integrity **FE** s not to be mistaken for the test of **functional endurance E acc. to DIN 4102-12**. In this case an entire cable system is tested instead of a single cable. Cable systems are cables and wires (power cables and lines, installation cables for telecommunication and information processing systems) together with their corresponding connection elements, cable trays and mountings.

The necessity of functional endurance is required by law, which, among other things, stipulates a functional endurance of at least 30 min (E 30) for

- fire alarm systems
- security lighting and
- passenger lift systems

Furthermore, functional endurance over a period of 90 min is required for

- extinguishing water pumps
- ventilation systems
- smoke outlets and
- fire brigade lifts

The test is generally conducted by an officially recognised testing centre. The test stand is to be in accordance with DIN 4102 Part 2 and must have a minimum lenght of 3 m accordingly. The test temperature follows the standard temperature-time curve.

Several test specimens from each cable construction with integrated functional endurance are to be tested, namely

- power cables
 - 2 specimens 4 x 1,5 and 2 specimens 4 x 50 or greater
- telecommunication cables
 2 specimens of the smallest permissible
 number of cores or pairs

The test specimens are to be suspended using practical means, applied to supporting structures provided for this purpose or attached directly to the ceiling or wall. The Test voltage is to be 400 V for power cables and 110 V for telecommunication cables.

Functional endurance is proven where no short circuit or current flow interruption occurs in the cable system throughout the fire test. The following classes are distinguished depending on the measured duration of functional endurance:

E30 >30 minutes E60 >60 minutes E90 >90 minutes

CUSTOMISED SPECIAL CABLES

Applications

- Energy transmission
- Data transmission
- Telecommunication
- Control

Requirements

- Heat-resistant up to 90°C
- Cold-resistant up to -40°C
- Oil-resistant acc. to DIN VDE 0472 Part 803
- Fuel-resistant
- Flame-resistant acc. to DIN EN 50265
- Flame-resistant acc. to IEC 60332.3 Cat. A, B, C
- Insulation integrity
- Functional endurance

Construction elements

Conductor	stranding elements
 solid 	cores
 multi-wired 	 pairs
• bare	• triple
 tinned 	• quad

tinned • quad

Individual screening stranding elements

- plastic-laminated aluminium foil
- braid

Stranding

in bunches
 in layers

Collective screening

- plastic-laminated aluminium foil
- copper tape
- tinned or bare copper wire braid
- galvanised steel wire braid
- galvanised steel tape

Materials

• PP

TPE

Insulating and sheathing materials are selected acc. to requirements and mechanical properties, e.g.:

Sheath	Insulation
• PE	• PVC
 Foam-Skin PE 	• PE

- TPE
- PUR

VOKA KABEL GMBH-GENERAL

Price basis

Price quotations apply for 1000 m of cable. Current prices are calculated according to quotations of the non-ferrous metalworking industry using electrolytic copper for conducting purposes (DEL notice), valid on the day after order receipt, plus purchase costs.

Copper price

Cables and wires are sold at daily copper prices (DEL). DEL is the stock exchange listing for German electrolytic copper for conducting purposes, that is 99.5% pure copper. DEL is indicated in EUR/100 kg.

Copper index

Copper index describes the copper weight of each article. If the listed copper index is 68, the corresponding cable contains 68 kg of copper in a length of 1000 m.

Copper addition

The copper addition (EUR/km) is calculated as follows:

ca = copper index x (DEL + 1% purchase costs) - copper basis (kg/km) 100

VAT

Prices are calculated excluding VAT. It will be charged additionally according to the fiscal regulations currently in force.

Pricing term

Carriage-free for a net merchandise value of EUR 1.500,- or more, or free station at the place of use respectively. If the net merchandise value is less than EUR 1.500,-, freight costs will be charged upon consultation.

Inland payment terms

2 % discount within 14 days, 30 days net, copper addition strictly net.

Divergences in measurement, weight, quantity and construction

Divergences related to raw materials or production remain reserved. Trade-customary over- or under- deliveries are permitted.

Short lengths

We reserve the right to deliver up to 10 % of the ordered quantity in short lengths.

Dimensions meter marking

The meter marking is a guide value and not calibration-capable. It does not serve for verifying the delivered length indicated by the cable manufacturer. Only calibrated measuring instruments are to be used for this purpose.

CE-IDENTIFICATION

General terms

The Single European Market requires a variety of regulations regarding free commodity exchange. Several EC directives for reducing technical trade barriers were enacted to take different national guidelines into account, e.g.:

- Construction Products Directive
- Machinery Directive
- EMC Directive
- Low-voltage Directive etc.

EC Low-voltage Directive

Cables and wires fall within the scope of the Low-voltage Directive 2006/95/EC of the European Parlament and the Council from 12. December 2006 on the harmonisation of the laws of Member States relating to Electrical Equipment designed for use within certain voltage limits.

certificate of conformity

The manufacturer is required to verify products regarding compliance with existing standards and specifications. The EC certificate of conformity certifies this inspection. It contains:

- name and adress of the manufacturer
- equipment description
- reference to harmonised standards
- · reference to specifications forming the basis of conformity

ENVIRONMENT PROTECTION

In product manufacturing we refrain from using hazardous substances according to Directive 2002/95/EC - RoHS. We use only lead-free materials in order to protect our environment. Cable residues, pilot and rejection products are mainly refurbished at our production sites. Residues of synthetic materials are re-employed in the production process. Furthermore we use recyclable materials for all our packaging and support materials.

Our reverse service for wooden drums can also help you contribute to environment protection. We return your empty wodden drums at no charge for you, and we can use them repeatedly at steady quality without wasting valuable resources.

For drum return please contact:

KTS GmbH Celler Str. 18 08525 Plauen Tel: +49 (0) 3741-522007 Fax: +49 (0) 3741-522018

You can also contact us directly:

E-mail: info@kts-kabeltrommelservice.de Internet: www.kts-kabeltrommelservice.de • year of CE symbol identification

VOKA issues this certificate of conformity for cables and wires falling within the scope of the Low-voltage Directive on demand.

CE identification

The CE identification certifies the conformity of a product with the corresponding EC directives. The requirement for CE marking is in effect since January 1st, 1997, and relates to all electrical equipment falling within the scope of the Low-voltage Directive.

Identification is made by the manufacturer, thus declaring that all directives applicable to the product are observed.

VOKA applies the CE symbol using either ink-jet printing on the cable or label marking.

GENERAL EXPLANATIONS

DEFINITIONS

ACR: (Attenuation to Cross-talk Ratio) The difference between attenuation and cross-talk, measured in decibels.

Adapter: Device to join different plug types.

AM: Amplitude modulation

Analogue signal: An electrical signal which varies continuously not having discrete values.

ANSI: American National Standards Institute.

AWG: American Wire Gauge, a wire diameter specification.

Backbone: The part of the network that carries the heaviest traffic. It is the main trunk cable from which all connections to the network are made.

Back-scattering technique: A technique for measurement of length, reflection and attenuation in a data cable. Only a small part of the signal is reflected to the source and will be analized.

Balun: A transformer device used to convert unbalanced coaxial signals to balanced signals.

Baud: Unit of data transmission speed meaning bits per second (100 baud = 100 bits/s).

Bit: The smallest unit of information in a binary system. Represents either a one or a zero (1/0).

Bit-rate: Transmission velocity of a binary signal.

Breakout cable: Each fibre of these cables has a separate strain relief (e.g. kevlar) and a separate sheath. Two or more of these sheathed fibres are cabled together and covered with a common sheath. In contrast, Mini-Breakout cables will not have separate strain relief or sheath.

Bridge: An interconnecting device for local area networks at the OSI Data Link Layer.

Byte: A group of bits (normally 8 bits in length).

CATV: Community area television.

CCTV: Closed-circuit television.

Channel: The end-to-end transmission path connecting any two points at which application specific equipment is connected. Equipment and work area cables are included in the channel.

Coding: A mechanical device at a plug-in connection system, which guarantees a connection at the correct side or which prevents inserting a plug into a bush of the same type of plug, but which is assigned to another application.

Concentrator: A device serving as a wiring hub into star-to-pology network. Sometimes refers to a device containing multiple modules of a network equipment.

Controller: A unit for the control of input and output operations.

Cross-talk: Unwanted transfer of energy from one circuit to another. Cross-talk typically occurs between adjacent circuits.

Data rate: Measure for the rate, in which data will be transferred over medium, indicated in bit/s or bps.

Decibel (dB): Unit for measuring relative strength (ratio) of two signals.

Dielectric: Insulation material between the conductors.

Digital signal: The binary (1/0) output of a computer or terminal. In data communications, an alternating, non-continuous (pulsating) signal.

EIA: Electronic Industries Association.

Electromagnetic interference: Irradiation of malfunctions during the signal transmission caused by electromagnetic fields.

EMC: Electro-Magnetic-Compatibilty. The ability of a system to minimize radiated emmissions and maximize immunity from external noise sources.

FDDI: Fibre distributed data interface.

Fibre optics: Light transfer by a glass fibre for data or signal transmission.

Fire load: Calorific value of the combustible components of a cable in kWh/m or MJ/m.

Flame retardant: In case of fire, fire forwarding will be delayed (FR).

Frequency: Number of oscillation periods of a signal for each unit of time.

FRNC: Flame retardant, non corrosive.

Full-duplex: A circuit or device permitting transmission in two directions at the same time.

Gain: The increase of a voltage or a current to a reference value.

GND: Ground.

Half duplex (HDX techniques): Half duplex transmission of a channel in both directions, either to be able to transmit or to receive, at the same point of time.

Halogen free: No halogenides (e.g. chlorine) in use. Halogen free cables are used with increased fire protection request regarding protection of individuals or because of high real value concentrations. They do not develop corrosive gases in case of fire (=non-corrosive), and the released amount of toxic gases is substantially lower than with PVC materials.

Hybrid cable: Consists of at least two different types of cables with a common sheath (e.g. FO and copper cables).

IEEE: Institute of Electrical and Electronic Engineers.

IEEE802: Designing project of IEEE for LAN standards. Indoor cable: Cables used for applications within buildings.

Interface: The region, where two systems or a major and a minor system meet and interact with each other.

Impedance: The combined effect of resistance, inductance and capacitance on a transmitted signal. Impedance varies at different frequencies.

ISDN: Integrated Services Digital Network. A carrier-provided service that allows simultaneous accomodation of a variety of switched digital data and voice transmission.

ISO: International Standardisation Organization

Insulation resistance: The higher is the resistance of a material, the better suitable is the material for insulations. The unit is (Ω m); for cables and cords of the derived units (M Ω km) or (G Ω km).

LAN: Local area network, a local data network, e.g. in a building.

Level: A measure of the difference between a quantity or value and an established reference.

Link: An end-to-end transmission path provided by the cabling infrastructure.

Loss: The part of energy applied to a system, that dissipated and performs not useful.

LSOH: Low smoke, zero halogen.

MAN: Metropolitan area network, region network, connection of several LANs, e.g. within a city.

Master: A central station, which can check directly different stations (remote).

MAU:(1) Multi-station access unit in reference to Token-Ring. (2) Medium attachment unit in reference to Ethernet. A wiring concentrator used in local area networks. A device, that allows terminals, PCs, printers and other devices to be connected in a star-based configuration to Token-Ring or Ethernet-LANs.

Multiplexer (MUX): A device allowing two or more signals to pass over and share a common transmission path simultaneously.

Network: (1) An interconnected group of nodes. (2) A series of points, nodes or stations connected by communication channels; the collection of equipment through which connections are made between data stations.

NEXT: Near end cross-talk.

NVP: Nominal Velocity of Propagation.

OTDR (Optical Time Domain Reflectometer): An instrument, that allows the characterisation of a fibre by the analysis of back-scattered light.

Outdoor cable: Cables, which are designed for under-earth or duct applications.

Patch cable: A flexible piece of cable, terminated at both ends with plugs. Used for interconnecting circuits on a patch board.

Peak: The maximum instantaneous value of a varying current or voltage.

GENERAL EXPLANATIONS

Pigtail: An approx. 1,5m long, single core FO-cable, with unilateral manufactured plug.

Port: In- or output of a data channel in network.

Primary-Cabling: A connection of the individual building distributors building-spreading at the plant area.

Protocol: A formal set of conventions governing the formatting and relative timing of message exchange between two communication systems.

Pulse: A voltage or current, which changes from one value to another and then back to the original value in a limited period of time.

Quartz glass: One in amorphous, thus not cristalline form, glassily solidified for melt from silicon oxide.

Receiver: An electronic device, that receives signals. In a fibre optic system it converts light energy into electrical energy.

Redundancy: This means, that there exists more than one single connection to realize data transmission between two network nodes.

Remote: Remote terminals are workstations, which are usually installed at another place than the central computer.

Repeater: A device, which automatically amplifies, restores or reshapes signals to compensate for distortion and/or attenuation prior to retransmission.

Resistance: In dc circuits, the opposition a material offers to current flow, measured in ohms. In ac circuits, resistance is the real component of impedance, and may be higher than the value measured in dc. It is determined by the quality of copper and the cross-section of the conductor. It rises linear with the cable length and is decisive for the attenuation.

Return loss: Noise or interference caused by impedance discontinuities along the transmission line at various frequencies.

Router: Connecting device for two LANs, which also can be different (e.g. Ethernet and Token-Ring). It could also be used to connect LANs and WANs.

Secondary-Cabling: Cable and connecting hardware that comprise the main and intermediate cross-connects, as well as cable runs between telecommunication closets, equipment rooms and entrance facilities.

Segment: Within a LAN, a connected part of a cable is called a segment.

Server: Computer in LANs, which handles with special functions in the network (e.g. file servers or printer servers).

Shield: A tape, serve or braid of metal, usually copper, aluminium or other conductive material, placed around or between electric circuits, cables or their components, to prevent signal leakage or interference.

Signal: Any visible or audible indication, which can convey information. Also, the information conveyed through a communication system.

Single-ended: Unbalanced, such as grounding one side of a circuit of transmission line.

Skin-effect: The tendency of alternating current to travel only on the surface of a conductor, if its frequency increases.

Splice: A permanent joint, joining two optical fibres.

Star-quad: Cable element, which consists of four cores twisted with each other, whereby the opposite cores form a transmission path (side circuit).

STP: Shielded twisted pair.

STQ: Shielded twisted quad.

Tertiary-Cabling: Horizontal connection of the floor distributor with the telecommunication outlet at the workstation.

TIA: Telecommunications Industries Association.

Token: A special signal, which runs continuously in the ring network. If a station wants to transmit, it has to take the token out of the ring, transmit the data and continue to send the token again.

Topology: The physical or logical architecture of connections and nodes of a network (star-, ring- and bus configurations).

TPDDI: Twisted Pair Distributed Data Interface.

Transmitter: An electronic device for sending signals.

Transition point: A location in the horizontal cabling subsystem where flat undercarpet cabling connects to round cabling.

UHF: Ultra high frequency (from 300 MHz up to 3 GHz).

UTP: Unshielded twisted pair.

UTQ: Unshielded twisted quad.

Velocity of light: v0 = 2, 998 x 108 m/sec.

VHF: Very high frequency (from 30 MHz up to 300 MHz).

WAN:Wide area network.

Wavelength: The distance between successive peaks or nodes of a wave. Work area cable: A cable assembly used to connect equipment to the telecommunication outlet in the work area

GENERAL TERMS AND CONDITIONS VOKA-KABEL GMBH Status 04/2012

1. Scope

1.1 The following conditions apply to any business relations with our customers (hereinafter referred to as "the Purchaser") as far as they are entrepreneurs in terms of § 14 German Civil Code, legal entities of public law or special funds under public law. The conditions apply particularly to contracts on the sale and/or the delivery of movable goods, regardless of whether we produce the goods or purchase them from subcontractors. The present conditions in their respective version also provide the master agreement to future contracts on the sale and/or the delivery of movable goods with the same Purchaser, excluding the necessity to refer to them in each particular case.

1.2 The Purchaser's General Terms and Conditions of Purchase are hereby expressly vetoed. They shall in no case be mandatory to us, even if we do not expressly contradict them at the conclusion of a contract. The sales terms below apply, even if we implicitly execute the Purchaser's order despite being aware of adverse or divergent conditions.

2. Sales terms

2.1 Any order of goods by the Purchaser shall be deemed a binding contractual offer. Unless otherwise indicated in the order, we shall be entitled to accept this contractual offer within 8 business days upon receipt. Acceptance shall be effected by means of order acknowledgement. Orders shall not be regarded as accepted until they have been confirmed by us. Our sales agents act as negotiators, not as contracting representatives.

The Purchaser shall not be permitted to assign claims arising out of the contractual relationship established with us to any third parties.

2.2 Prices indicated in our order acknowledgement shall prevail to the account of services rendered.

2.2.1 The price basis of any order acknowledgement is formed by the price list valid on the respective day of acknowledgement in correspondence with the metal quotation agreed upon (usually 1 day after order receipt). If the metal quotation is omitted on that day, the subsequent metal quotation shall apply.

2.2.2 If we have received a purchase offer in the form of an order we are able to finally acknowledge including the scheduled delivery date (cleared order), we shall calculate the price according to the price list and metal quotation agreed upon. Any final order acknowledgement requires clarification of the customer, the customer's address, the address for invoicing and delivery, the order content stating article quantities and types to be delivered, discounts, delivery requests or delivery dates respectively and special conditions, where applicable.

2.2.3 For business to be processed within 4 months after contract conclusion we shall be entitled to increase prices agreed upon with regard to a short-term change in the metal quotation. The reason for this is that significant variations compared to prices indicated in the order acknowledgement may arise due to the daily redefinition of the metal quotation.

2.2.4 The metal quotation forms the basis of the raw material calculation or the raw material accounting respectively. It is calculated on the basis of the quotation of the non-ferrous metalworking industry for electrolytic copper wire bars for conducting purposes (DEL notice) plus incurred purchase costs. The DEL notice is published in the business section of leading daily newspapers.

2.2.5 If stocking up on metal and procurement on DEL notice is impossible or not ensured at full volume, we shall account for the actual metal procurement prices plus purchase costs incurred.

2.2.6 For delivery ex distribution centre prices of the price list valid on the date of distribution and the metal quotation (DEL notice or metal procurement price) on the date of distribution shall apply.

2.2.7 If copper is provided to the supplier by the Purchaser, we shall charge the hollow price. The copper shall be consigned to the supplier's control no later than 5 weeks prior to the acknowledged delivery date.

2.3 Our prices are based on the cost conditions of raw material market procurement costs stated to us at the time of order acknowledgement. If these cost conditions change, we shall be entitled to implement a subsequent price adjustment or, as the case may be, to rescind from the aggregated or remaining order, provided that we notify the Purchaser immediately after the changed conditions have become known to us and, in case of rescison, return payments already received from the Purchaser.

VOKA

2.4 Call orders

If call-off delivery is agreed, the Purchaser undertakes to determine and communicate the time of complete delivery within an appropriate period of one month maximum from the date of order acknowledgement. This shall also apply in case of delivery arrangements for certain acceptance dates. Unless a separate agreement on call-off dates is concluded, call orders shall always be delivered within 3 months from the date of order acknowledgement. If the Purchaser does not adhere to the call commitment, we shall be entitled to sue for acceptance and payment. After expiration of the call commitment the prices of the company Vogtländisches Kabelwerk GmbH, valid at the time of delayed calls, shall apply to further call arrangements.

3. Delivery terms

3.1 Our delivery commitment implies that we are able to stock up with raw materials necessary for the order on raw material quotations prevailing on the date of order acknowledgement. If this precondition is not given, paragraph 2.3 of our General Terms and Conditions shall apply.

3.2 Periods and dates of delivery are always approximated statements. Any delivery period shall start with the despatch of our written order acknowledgement and the delivery date stated therein at the earliest, but, however, not prior to the provision of documents to be procured or materials to be provided by the Purchaser and the observance of payment terms agreed upon.

3.3 The delivery period shall be deemed observed after the delivery item has left our factory or warehouse or if the readiness for shipment is communicated prior to its expiration.

3.4 If subsequent changes or amendments of the delivery contract are agreed, a new delivery period shall be agreed at the same time if the original period cannot be observed due to the changes or amendments. The new delivery period shall not start prior to the despatch of our new order acknowledgement.

3.5 Events of force majeure shall authorise us to delay performance of services for an appropriate period of time or to rescind because of contractual parts not yet fulfilled, provided that we notify the Purchaser immediately after these conditions have become known to us and, in case of rescission, return payments already received from the Purchaser. Strike, lockout, mobilisation, war, embargo, ban on exports and imports, shortage of raw materials and fuels, fire, traffic blockage, interruption of operations or transport as well as similar conditions, even if such conditions occur on the part of upstream suppliers, shall be deemed equivalent to force majeure. Indemnity claims of the Purchaser shall be excluded in cases of force majeure, provided that neither intent nor an act of culpable negligence occurred on our part. This limitation of liability shall not apply to damages resulting from injuries inflicted to the body, life or health.

3.6 The aforementioned conditions shall not even be covered by us if they occur during a current event of default. We shall notify the Purchaser of the beginning and end of such impediments at earliest convenience.

3.7 Delivery commitments and delivery periods shall only be agreed reserving correct and due receipt of the subcontractor's deliveries. If this is not ensured, we shall be entitled to rescind from the contract without compensation, provided that we notify the Purchaser immediately after these conditions have become known to us and, in case of rescission, return payments already received from the Purchaser. We shall not assume any risk of procurement.

3.8 If any delivery period is exceeded, the Purchaser shall be committed to grant an appropriate grace period to us, which may not fall below three weeks.

3.9 After expiration of any acceptance period in accordance with the provision stipulated under paragraph 2.4 of these General Terms and Conditions we shall no longer be committed to deliver. In this case we reserve the discretionary decision to rescind from the contract, to demand advance payment or to condition our delivery on adequate collateral. This shall also apply in the case of conditions becoming known to us, which justify doubts about the Purchaser's creditworthiness, particularly if the Purchaser does not pay promptly or immediately despite dunning letter and overdue claims.

3.10 We reserve the right to deliver up to 10 % of the order quantity in excess or short lengths. Divergences related to raw materials or production remain reserved. Customary excess or short lengths shall be permitted.

3.11 Orders on special services shall exclusively be delivered in manufacturing lengths according to the production conditions.

3.12 Shipping charges

We deliver free to the door for a net merchandise value of \in 1500,- or more (on metal basis) or free station of the recipient respectively, this shall apply to inland shipment (mainland). In case of international shipment we deliver free German border. We shall charge additional freight for small orders with a net merchandise value of less than \in 1500,- (on metal basis).

3.13 Packaging charges

Packaging shall be free of charge for a net merchandise value of 250,- EUR or more. Packaging shall be charged at cost price if the value is less than 250,- EUR.

3.13.1 Returnable drums and barrels belonging to VOKA and loaned to the Purchaser with our deliveries shall be charged separately. Barrels and drums shall be taken back and credited with 2/3 of the charged value if they are in a good and reusable condition. Any delivery of stillages and euro-pallets shall be effected on exchange. In case of occurring exchange delays to be covered by the Purchaser, costs arising out of this shall be charged to the Purchaser.

3.13.2 KTG drums (flange diameter 50 to 280 cm) for cables and wires are the property of Kabeltrommel GmbH & Co. KG (KTG), Cologne, and shall be provided to the Purchaser according to KTG's conditions on the transfer of cable drums.

3.13.3 We shall not grant any freight reimbursement for the collection of goods.

3.13.4 The Purchaser shall indemnify the supplier from the obligation to accept returnable products according to § 4 of the Packaging Directive.

4. Payment terms

4.1 Invoicing shall be made upon delivery. We shall be entitled to assign claims arising out of our business connection.

4.2 Invoices issued to the Purchaser shall be payable as indicated in the invoice.

4.3 Invoices accounting a total amount of less than 25,- EUR shall be payable strictly net.

4.4 In the event of non-compliance with the payment terms indicated in the invoice or paragraph 4.3 respectively, the Purchaser shall be on default. During the default period we shall be entitled to add interest in the amount of the legal default interest rate currently in force to the invoice amount. The right to enforce further damages, particularly proven increased interest rates, shall remain unaffected thereof. The default consequences shall arise automatically, i.e. independent from the enforcement of default. In the event of default all our accounts receivable, including bills accepted but not yet discharged, shall become due in cash immediately. The Purchaser shall no longer be entitled to sell goods being in our ownership or co-ownership (see clause 6 Retention of title) and shall be committed to provide adequate collateral to us. We reserve the same right in the event of reasonable doubts regarding the Purchaser's creditworthiness. In this case we shall furthermore be entitled to condition the delivery of other goods on the provision of adequate collateral and/or cash in advance.

4.5 Payment shall principally be made in the form of cash payment or postal order. Bill and bill/cheque payments shall only be accepted within a period of 10 days from the invoice date and under reserve, and they require our explicit consent. They shall be considered as payments only after they have been discharged by the acceptor and we have consequently been exonerated of the endorser's liability with the result of the retention of title remaining in force for our benefit until the discharge of the bill. Any payment shall be made with the effect of discharging the debt and exclusively to the bank indicated in the invoice, to which we have assigned our claims arising out of our business connection.

4.6 The Purchaser shall only be entitled to offset or retain payments if the Purchaser's counterclaim(s) is/ are not disputed and legally ascertained. The retention arising out of the same contractual relationship shall, however, remain unaffected thereof.

4.7 Our regional agents do not hold any power for collection.

GENERAL TERMS AND CONDITIONS VOKA-KABEL GMBH Stand 12/2011

5. Transfer of risk

Any risk shall be transferred to the Purchaser after the Purchaser has been notified by us that the goods are reported to be ready for collection or shipment, but no later than on the date on which the goods have left our factory or have been taken over by the Purchaser in our factory. This shall also apply in the event of carriage-free delivery and if the goods are shipped by us upon request of the Purchaser. In the event of shipment being delayed at the Purchaser's request or due to reasons attributable to the Purchaser, the risk shall be transferred to the Purchaser for the duration of the delay.

6. Retention of title

6.1 We reserve the title to the property in goods supplied until full payment of any accounts, including accounts accruing in the future, arising out of the business connection, even if payments referring to particularly identified accounts are made. In the event of open account the reserved property shall be deemed collateral to our current account balance claims.

6.2 Goods subject to retention of title may only be sold according to the rules of business transactions. This shall no longer apply in the event of the Purchaser being on default. The Purchaser shall not be entitled to pledge or assign goods as collateral. Pledging on the part of any third parties shall immediately be notified to us.

6.3 Any manipulation, processing or connection of our goods performed by the Purchaser shall in any case be made for us without the event of liabilities accruing to us. In the event of processing, manipulation or connection to other items not under our ownership, we reserve the right of co-ownership to the new item in an amount resulting from the ratio of the invoice value of processed, manipulated or connected goods subject to retention of title to the value of the new item.

6.4 For collateral purposes the Purchaser shall fully assign to us all claims against any third parties, including any current account balance claims on an open item basis, attributable to the Purchaser in connection with the use of goods subject to retention of title, particularly through resale, manipulation and processing or due to another legal cause (e.g. unlawful act) in the amount of the invoice value of our goods. Any assignment shall act as collateral to any of our claims and particularly to indemnity claims raised against the Purchaser. The Purchaser shall be entitled to collect assigned claims prior to our revocation. In the event of default or other indications of the Purchaser's financial difficulties, the direct debit authorisation shall expire without express revocation.

6.5 If the total realisable value of existing collateral exceeds our claims by more than 10 %, we shall in this extent be committed to release collateral selected by us on the Purchaser's request.

6.6 In the event of default, the Purchaser shall upon our request be committed to furnish particulars suitable for the enforcement of our rights of retention of title, in particular to issue a statement on goods subject to retention of title and their destination.

6.7 If the Purchaser fails to accomplish the Purchaser's commitments arising out of the mutual business connections, the Purchase's right to own goods subject to retention of title shall expire. We shall in such cases be entitled to take back goods subject to retention of title. We shall also be entitled to enter the Purchaser's company grounds or other premises for the purpose of taking possession of goods subject to retention of title shall constitute rescission from the contract. We shall be entitled to commercialise goods subject to retention of title after their return. Proceeds resulting from the valorisation shall be reduced by reasonable valorisation costs and then be offset against amounts owed by the Purchaser.

7. Warranty

Unless other directives or references based on special written agreements are to be observed and become an integral part of the contract, we deliver subject to and in accordance with the requirements stipulated by the regulations of the Association for Electrical, Electronic and Information Technologies (VDE).

7.1 The Purchaser's claims for defects shall only be in force if the Purchaser duly observes the Purchaser's obligation stipulated by § 77 HGB (Code of Commercial Law) to inspect the goods and give notice of defects. The Purchaser shall conduct factual and functional inspect

tion and testing of incoming goods immediately upon receipt and by reference to our shipping documents. The Purchaser cannot be exonerated of the obligation to perform inspection. Costs incurring to the Purchaser due to processing of goods without prior inspection shall always be borne by the Purchaser.

7.2 Shortfall quantities and/or apparent defects shall only be warranted upon written notice of the complaint specifying the order and delivery note data and within a period of 10 workdays after distribution.

7.3 If apparent defects have not been contested within the aforementioned period, any claims of the Purchaser in this respect shall be excluded.

7.4 Unapparent defects emerging in the course of time shall immediately be communicated to us by the Purchaser.

7.5 The return of goods necessary in the event of defect requires our prior consent. In this respect the legal regulation on the taxing of costs applies. Returns made without our prior consent shall not require our acceptance. In this case the Purchaser shall solely bear the total costs of return.

7.6 In the event of supplementary performance in the form of a new delivery due to a justified notice of defects, the provisions on the delivery period apply accordingly. We require an appropriate period of time of at least three weeks to be granted to us for rectifying the defects in the form of subsequent improvement.

7.7 The presence of a defect shall constitute the following rights to the Purchaser:

7.7.1 In the event of defectiveness, the Purchaser shall first of all have the right to demand supplementary performance from us. Any supplementary performance can according to the Purchaser's choice be effected by means of removal of the defect or delivery of new goods. We reserve the right to refuse the form of supplementary performance chosen by the Purchaser if it would only be possible at disproportional cost.

7.7.2 In the event of failed efforts to provide supplementary performance, we reserve the additional right to undertake further supplementary performance according to the conditions indicated under 7.7.1 and within an appropriate period of time. The Purchaser shall have the right to rescind from the contract or to abate the purchase price only if even the repeated supplementary performance has failed.

7.7.3 Claims of the Purchaser due to expenditures required for the purpose of supplementary performance, particularly for carriage, route, labour and material costs, shall be excluded insofar as the expenditures are increasing in case the delivery item has subsequently been transferred to a location other than the Purchaser's establishment, unless the transfer corresponds to its intended use.

7.7.4 Unless the defect has been fraudulently concealed by us, the warranty period shall principally last one year from the date of delivery of the goods. The Purchaser shall in any case furnish proof of the defect being already present on delivery.

7.7.5 Warranty claims shall principally be excluded if inappropriate modifications, repairs or other interventions have been performed by the Purchaser or any third parties without absolute necessity and the contested defect was caused or may have been caused in this way.

8. Rights in tools

The Purchaser or any third parties shall not acquire any rights (transitional right, rights of use etc.) by reimbursing portions of the costs for tools. In the event of industrial property rights of third parties being infringed due to deliveries according to drawings or other information provided by the Purchaser, the Purchaser shall indemnify us against any claims thereto.

9. Liability

9.1 Unless otherwise specified in these General Terms and Conditions including the provisions below, we shall be liable for any breach of contractual and non-contractual obligations according to the relevant legal regulations.

9.2 Unless none of the regulations below applies, we shall in the event of damages – for whatever legal reason – principally be liable only in case of malice and culpable negligence:

In the event of ordinary negligence we shall only be liable:

 a) for damages resulting from injuries to the body, life or health;

b) for damages resulting from the violation of an integral contractual obligation (i.e. an obligation of such importance that its accomplishment facilitates due execution of the contract in the first place and its observance is and may regularly be trusted by the contractual partner); in this case our liability shall, however, be limited to the reimbursement of the predictable damage typically occurring.

9.3 The limitation of liability according to subparagraph 9.2 shall not apply if we have fraudulently concealed any defect or have assumed warranty for the quality of the goods. The same shall apply to claims of the Purchaser according to the Product Liability Law.

10. Export regulations

If a national Purchaser exports goods abroad, the Purchaser is committed to verify whether the exported goods are subject to restrictions of the German Foreign Trade and Payments Act. The exporter of the goods bears the sole responsibility for observing the respective export regulations. This also applies to the provisions of US foreign trade legislation. We shall in no case assume any warranty that products supplied by us comply with such regulations.

11. Place of jurisdiction

As far as the customer is a merchant in accordance with the Code of Commercial Law, a legal entity of public law or a special fund under public law, our company headquarters shall be the exclusive place of jurisdiction for any legal action taken against us.

In the event of legal action against the Purchaser, we shall also be entitled to bring legal proceedings before a court locally competent for the headquarters or a sub-sidiary of the Purchaser.

12. Applicable law

12.1 These General Terms and Conditions and any legal relationships between us and the Purchaser shall exclusively be governed by the law of the Federal Republic of Germany.

12.2 The UN Convention on Contracts for the International Sale of Goods (CISG) shall be excluded.

13. Final provisions

In the event of any regulation under these General Terms and Conditions being void or becoming unenforceable, the effectiveness of the other conditions shall remain unaffected thereof. In this case both parties shall be committed to introduce an effective and enforceable clause, corresponding as far as possible to the economic and non-material goals within the legal restrictions, in place of the void and unenforceable clause.

